

General Certificate of Education

Chemistry 5421

CHM3/W Introduction to
Organic Chemistry

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

CHM3/W

Question 1

- (a) (i) A compound OR molecule containing OR consisting of hydrogen and carbon only
- 1

1

- (a) (ii) $C_9H_{20} + 9^1/_2O_2 \longrightarrow 9CO + 10H_2O$
- 1 Or multiple

(a) (iii) **M1**

High temperature

OR spark

OR 2500°C ≤ T ≤ 4000°C

M2

$$\frac{1}{2}N_2 + \frac{1}{2}O_2 \longrightarrow NO$$

2 Ignore "very" when referring to high temperature

Credit phonetic spelling

Or multiple

(b) (i) Platinum OR Pt

OR

Palladium OR Pd

OR

Rhodium OR Rh

- (b) (ii) **25** NO **8** CO₂ **12½** N₂ **9** H₂O 1 Credit whole equation doubled
- (c) Releases OR is a source of OR provides a 1 Ignore "enthalpy" useable form of heat OR energy (when burned) Ignore "exothermic"
- (d) $H_2S + 1^{1/2}O_2 \longrightarrow SO_2 + H_2O$ 1 Or multiple

M1 2 (a) Credit propan-2-one as the only other acceptable response. propanone **M2** CH₃CH₂CHO Penalise CH=O for the aldehyde OR correct aldehyde with functional group group drawn out. (b) Functional group (isomerism) ONLY 1 Both words needed 1 (c) The formula which shows the (actual) Penalise reference to <u>ratio</u> of atoms number of each type of atom OR atoms of each element in the molecule / compound. (d) C₃H₆O ONLY 1 Elements in any order (e) (i) Redox OR Oxidation 1 Either word ONLY (e) (ii) The mark is for the <u>structure</u> of propanoic Carboxylic acid group must show acid both the double and the single bonds to oxygen. н₃с---сн₂--с<́ Formula could show C₂H₅ OR CH₃CH₂ (e) If Tollens' is chosen, then 1 No mark for choice of reagent, but (iii) do not award the mark if no reagent given. silver mirror / coating Insist on Tollens' OR Fehling's as OR black precipitate / solid the ONLY reagents If <u>Fehling's</u> is chosen, then

red precipitate / solid

(f)	(i)	Contains a C=C OR double bond	1	
(f)	(ii)	1° OR Primary (alcohol)	1	
(f)	(iii)	Structure for		Structure must be clear
			1	
		CH ₂ BrCHBrCH ₂ OH		Accept the alternatives
				CH ₂ BrCHBrCHO
		as shown or drawn out		and
				CH₂BrCHBrCOOH

(a) (i) (free-) radical substitution

1 Both words needed

4

(a) (ii) Initiation: $Cl_2 \longrightarrow 2Cl^{\bullet}$

Ignore reference to uv/sunlight/heat.

First propagation:

$$Cl^{\bullet} + CHCl_3 \longrightarrow {}^{\bullet}CCl_3 + HCl$$

The dot can be anywhere on the CCI₃

Second propagation:

$$Cl_2 + \bullet CCl_3 \longrightarrow CCl_4 + Cl \bullet$$

Penalise the absence of a dot once only

If half-arrows used, they must be correct.

Termination:

One from

(b) (i) dichlorodifluoromethane

1 ONLY these

OR

1,1-dichloro-1,1-difluoromethane

QoL

Penalise "cloro" and penalise "flouro"

(b) (ii) (free- OR chlorine-) <u>radical</u>

OR chlorine atoms

1 Penalise reference to "substitution"

Ignore "alkyl"

(b) (iii) propagation (step)

1 Ignore "first" or "second"

(a) (i) Polar C-Br (bond)

OR

δ+ $(\delta -)$

Br

OR

partially positive carbon atom on C-Br (bond)

(a) (ii)

M1 must show an arrow from the lone pair of electrons on the nitrogen atom of the ammonia to the C atom of the C-Br bond.

M2 must show the movement of a pair of electrons from the C-Br bond to the Br atom.

Mark M2 independently.

M3 is for the structure of the alkylammonium ion and could be obtained from CH₃CH₂NH₃⁺

M4 is for an arrow from the N-H bond to the N atom.

The second mole of ammonia is not essential for full credit, therefore ignore this part even if other species are used.

Award full marks for an S_N1 mechanism in which M1 is the attack of the ammonia on the intermediate carbocation.

1 The C-Br bond needs to be drawn out or stated

4 Penalise M1 if negative charge on ammonia

> Penalise M2 for formal charge on C of C-Br or incorrect partial charges

Penalise once only for a line and two dots to show a bond.

Max 3 marks for wrong reactant or "sticks"

(b)		Reagent: KCN OR potassium cyanide OR NaCN OR sodium cyanide	1	Penalise "acidic" as a condition but ignore other conditions.
		Name: propan(e)nitrile OR propan(e)-1-nitrile	1	ONLY these names
(c)	(i)	Electron pair donor OR Forms a coordinate / covalent bond by the reaction of OR attack by an electron pair / pair of electrons.	1	Insist on both "electron pair" <u>and</u> an action by the electron pair. Accept "lone pair"
(c)	(ii)	Hydroxide ion OR OH ONLY	1	The minus sign can be anywhere on the OH The electron pair (if drawn) MUST be on the oxygen atom

(a) **3**-methylbut-**1**-ene

1 ONLY

(b) Elimination

1 Credit "base elimination" but NOT "nucleophilic elimination"

No other prefix.

3

M2

HO: M2 H H H H₃C - C - C - C - H Penalise M1 if covalent KOH

Penalise M3 for formal charge on C or incorrect partial charges or extra arrow from Br to e.g. K+

M1 must show an arrow from the lone pair on oxygen of a negatively charged hydroxide ion to the correct H atom.

Penalise once only for a line and two dots to show a bond.

M2 must show an arrow from the correct C-H bond to the correct C-C bond and should only be awarded if an attempt has been made at M1

Max 2 marks for the mechanism for wrong reactant or "sticks"

M3 is independent.

Ignore incorrect organic product

Award full marks for an E1 mechanism in which M2 is on the correct carbocation.

(c) (i) Structure OR name

1 If name is given it must be correct with "bromo" before "methyl"

2-bromo-3-methylbutane

OR

(CH₃)₂CHCHBrCH₃

Apply list principle if both structure and name given

(c) (ii) Electrophilic addition ONLY

1 Both words

(d) M1 Structure of pent-2-ene ONLY:

2 M1 and M2 should be marked independently

CH₃CH₂CH=CHCH₃

Credit M1 with a structure which is either linear or cis or trans (or both)

Structure MUST show a double bond

M2 Type: Geometric(al) OR <u>cis-trans</u>
(OR E/Z)

(a) M1 (Separation based on boiling point)

Separation depends on <u>boiling point</u>. (Ignore reference to melting point or density)

4 **Maximum 2 marks** if candidate refers to bond breaking or cracking or using a Blast furnace or adding oxygen/air.

M2 (Link between boiling point and size/forces)

Boiling point depends on M_r OR molecular size OR chain length OR intermolecular / Van der Waals forces OR candidate links boiling point with heavier/lighter fractions.

Ignore references to smaller/larger fractions.

QoL for M2

M3 (Specified temperature gradient)

<u>Specified</u> temperature gradient OR difference stated on column/tower OR explained e.g. hotter at bottom.

(If numbers used, accept up to 400°C at the base and down to 25°C at top)

M4 (Position of molecules/fractions on column)

Lower M_r OR lower boiling point OR shorter chains OR smaller molecules OR more volatile/gaseous molecules OR lighter fractions (condense) at top

(OR converse at bottom)

(b) **M1** 3 *NOT just "hot" for M2*

Thermal cracking

M2

Any T (or range) in the range 400°C to 900°C OR

High temperature.

M3

(Free- OR alkyl-) radical

Mark M1, M2 and M3 independently

<u>Penalise M2</u> for any reference to catalyst.

Penalise M3 for reference to "substitution"

3

3

(c) M1

Yeast or suitable enzyme (zymase)

Penalise M1 if oxygen/air added to process .

M2

Fermentation

М3

Ignore reference to temperature and water.

 $C_6H_{12}O_6$ \longrightarrow $2CH_3CH_2OH + 2CO_2$ (or $2C_2H_5OH$)

Penalise C₂H₆O

If O_2 is in the equation, penalise the equation (M3) but NOT M1

Mark M1, M2 and M3 independently

(d) **M1**

(fractional) distillation OR fractionation

There are two processes and therefore assume that the order of answers is the order of marking unless annotated by the candidate

M2

<u>c(oncentrated)</u> H₃PO₄ OR <u>c(oncentrated)</u> H₂SO₄ OR Al₂O₃ OR alumina OR porous pot OR pumice

M3

Penalise M3 for any other prefix such as "base"

(acid-catalysed) dehydration OR elimination

Mark M1, M2 and M3 independently

(e) **M1**

2 Accept structures in either order

For M1, insist on bonds either side of CH₂ groups

For M1 ignore "n" and brackets

Insist on C-O bonds in M2 structure.

M2

General principles applied to marking CHM3/W papers

It is important to note that the guidance given here is generic and specific variations may be made at individual standardising meetings in the context of particular questions—and papers.

H₃C—Br H₃C \vdots Br H₃C \vdots Br

Curly arrows should originate either from a lone pair of electrons or from a bond. Each of the following representations should not gain credit.

- 1. The absence of a radical dot in a free radical substitution should be penalised **once only** within a clip.
- 2. The use of double-headed arrows or the incorrect use of half-headed arrows in free-radical mechanisms should be penalised **once only** within a clip.

B. Structures

- Bonds should be drawn correctly between the relevant atoms.
 For example, if candidates show the alcohol functional group as C-H-O, they should be penalised on every occasion.
- 2. Some latitude should be given to the representation of C-C bonds in structures, given that CH₃— is considered to be interchangeable with H₃C— even though the latter would be preferred.
- 3. Poor presentation of vertical C C bonds should **not** gain credit.
- 4. The use of 'sticks' in structures should **not** gain credit. The occasions that this applies will be indicated in the mark scheme.
- 5. Some examples of formulae for specific compounds which should **not** gain credit are given here

CH₃COH for ethanal

 $\mathsf{CH_2OCH_2} \text{ or } \mathsf{CH_2CH_2O} \qquad \text{for} \qquad \qquad \mathsf{epoxyethane}$

CH₃CH₂HO for ethanol

OHCH₂CH₃

C₂H₆O (except when specifically indicated in the mark scheme)

CH₂CH₂ for ethene

CH₂.CH₂ CH₂:CH₂

(N.B. Exceptions may be made in the context of balancing equations)

C. Names

As a general principle, non-IUPAC names or incorrect spelling or incomplete names should **not** gain credit. Some illustrations are given here.

but-2-ol

2-butanol

2-hydroxybutane butane-2-ol

all should be butan-2-ol

2-methpropan-2-ol

should be 2-methylpropan-2-ol

2-methylbutan-3-ol

should be **3-methylbutan-2-ol**

3-methylpentan3-mythylpentane3-methypentane

all should be 3-methylpentane

propanitrile

should be propanenitrile

aminethane

should be **ethylamine** (although aminoethane can gain credit)

2-methyl-3-bromobutane

all should be 2-bromo-3-methylbutane

3-bromo-2-methylbutane 3-methyl-2-bromobutane

2-methylbut-3-ene

should be 3-methylbut-1-ene

difluorodichloromethane

should be dichlorodifluoromethane

D. Reagents

The guiding principle is that a reagent is a chemical which can be taken out of a bottle or container. Failure to identify whole reagents **will be penalised**.

cyanide (ion) hydroxide (ion) should be e.g. potassium cyanide should be e.g. sodium hydroxide

E. Some general guidance on organic structures

Each of the following **should gain credit** as alternatives to correct representations of the structures.

 $CH_2 = CH_2$

for ethene,

CH₃CHOHCH₃

for

propan-2-ol, CH₃CH(OH)CH₃

H₂C=CH₂

CH₂OHCH₂OH

for

ethane-1,2-diol

F. Incorrect case for element symbol

The use of an incorrect case for the symbol of an element should be penalised **once only** within a clip. For example, penalise the use of "h" for hydrogen, "CL" for chlorine or "br" for bromine.

G. The "List principle"

If a question requires one answer and a candidate gives two answers, no mark is scored if one answer is correct and one answer is incorrect.

There is no penalty, however, if both answers are correct.

N.B. Certain answers are designated in the mark scheme as those which the examiner should "Ignore" and these answers are not counted as part of the list.