Surname	Other Names										
Centre Number							Candida	ate Number			
Candidate Signature											

For Examiner's Use

General Certificate of Education June 2008 Advanced Subsidiary Examination

CHEMISTRY CHM2
Unit 2 Foundation Physical and Inorganic Chemistry

Wednesday 4 June 2008 9.00 am to 10.00 am

For this paper you must have

a calculator.

Time allowed: 1 hour

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or blank pages will not be marked.
- Your answers to the parts of **Section B** should be on the pages indicated.
- All working must be shown.

- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided as an insert.

Information

- The maximum mark for this paper is 60.
- The marks for each question are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answers to the question in **Section B** in continuous prose, where appropriate.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

For Examiner's Use					
Question	Mark	Question	Mark		
1		4			
2		5			
3					
Total (Column 1)					
Total (Column 2) —>					
TOTAL					
Examiner's Initials					

SECTION A

Answer all questions in the spaces provided.

1		extraction involves reduction reactions using more reactive metals, hydrogen, carbon ctrolysis.
1	(a)	Titanium can be extracted from titanium(IV) chloride by reduction using either sodium or hydrogen.
1	(a)	(i) Write an equation for each of these reduction reactions.
		Reaction with sodium
		Reaction with hydrogen(2 marks)
1	(a)	(ii) Give one reason, other than cost, why hydrogen is not the preferred reducing agent for the extraction of titanium.
		(1 mark)
1	(b)	Suggest why carbon is not a suitable reducing agent for the extraction of titanium.
		(1 mark)
1	(c)	Carbon is a reducing agent in the extraction of iron from impure iron(III) oxide. Slag is a by-product of this process.
1	(c)	(i) Write an equation for the reduction of iron(III) oxide with carbon. State one condition necessary for this reaction to occur.
		Equation
		Condition
		(2 marks)

1	(c)	(ii)	Give the name of the raw material used to remove the silicon dioxide impurity from the iron(III) oxide. Write equation(s) to show how this raw material react to form slag in the extraction process.	ts
			Raw material	
			Equation(s)	
			(3 mar	
1	(c)	(iii)	State one use of slag.	
			(1 ma	
1	(d)		oon is used for the electrodes in the extraction of aluminium from aluminium e. Cryolite is used in this extraction process.	
1	(d)	(i)	Write a half-equation for each of the electrode reactions.	
			Half-equation 1	· ···
			Half-equation 2	 ks)
1	(d)	(ii)	Give one reason why cryolite is used.	
			(1 ma	 rk)
1	(e)	Give	e the major reason why recycling of aluminium is economically viable.	
		•••••	(1 ma.	rk)

Turn over for the next question

2		alpy of combustion and bond enthalpy data can be us alpy changes for other reactions.	sed, with Hess's Law, to calculate
2	(a)	Define the term standard enthalpy of combustion.	
			(3 marks)
2	(b)	State Hess's Law.	
			(1 mark)
2	(c)	The equation below shows the formation of buta-1,	3-diene, C ₄ H ₆
		$4C(s) + 3H_2(g) \longrightarrow C_4H_6(g)$	(g)
		Use the following data to calculate the standard ent buta-1,3-diene.	halpy of formation of
		$C(s) + O_2(g) \longrightarrow CO_2(g)$	$\Delta H^{\circ} = -394 \mathrm{kJ} \mathrm{mol}^{-1}$
		$H_2(g) + \frac{1}{2}O_2(g) \longrightarrow H_2O(l)$	$\Delta H^{\Theta} = -286 \mathrm{kJ} \mathrm{mol}^{-1}$
		$C_4H_6(g) + 5\frac{1}{2}O_2(g) \longrightarrow 4CO_2(g) + 3H_2O(l)$	$\Delta H^{\circ} = -2542 \mathrm{kJ} \mathrm{mol}^{-1}$
			(3 marks)

2 (d) Buta-1,3-diene reacts with hydrogen to form butane according to the following equation.

The standard enthalpy change for this reaction, $\Delta H^{\odot} = -240 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$

Bond	C-C	Н-Н	С-Н
Mean bond enthalpy/kJ mol ⁻¹	348	436	412

Use the data given above to calculate a bond enthalpy value for the C=C bond.						
(3 marks)						

Turn over for the next question

3	(a)	State	e, in terms of electrons, what happens to an oxidising agent in a redox reacti	ion.
		•••••	(-	1 mark)
3	(b)		en concentrated sulphuric acid is added to solid sodium bromide, the acid real Br^- ions to form SO_2 and Br_2	acts
3	(b)	(i)	Write a half-equation to show how SO ₂ is formed from sulphuric acid.	
3	(b)	(ii)	Write a half-equation to show how Br_2 is formed from Br^- ions.	 I mark)
3	(b)	(iii)	Hence write an overall equation for the reaction of Br ⁻ ions with sulphuric	 1 mark)
3	(b)	(iv)	Deduce the role of Br ⁻ ions in this reaction.	
3	(c)	(i)	Identify a halide ion that does not produce SO ₂ when the solid sodium hal reacts with concentrated sulphuric acid.	<i>l mark)</i> lide
3	(c)	(ii)	Write an equation for the reaction of concentrated sulphuric acid with the ion that you identified in part (c)(i).	 1 mark)
			(1 mark)

3	(c)	(iii)	State the role of sulphuric acid in this reaction.
			(1 mark)
3	(d)	When	chlorine gas is bubbled into a solution of sodium bromide the following reaction s.
			$Cl_2(g) + 2NaBr(aq) \longrightarrow 2NaCl(aq) + Br_2(aq)$
		Deduc	ce the role of Cl ₂ in this reaction
			(1 mark)
3	(e)	In aqu	neous solution, silver nitrate and ammonia can be used to test for halide ions.
3	(e)		Identify a halide ion that reacts with silver nitrate solution to produce a precipitate which dissolves completely in dilute aqueous ammonia.
			(1 mark)
3	(e)		Write an ionic equation for the reaction between silver nitrate and the halide ion you identified in part (e)(i).
			(1 mark)
3	(e)	(iii)	Identify the halide ion which cannot be detected using silver nitrate.
			(1 mark)

4	The	hydro	gen used in the Haber process is made by the following reaction.
		($CH_4(g) + H_2O(g) \rightleftharpoons CO(g) + 3H_2(g) \qquad \Delta H^{\circ} = +206 \text{ kJ mol}^{-1}$
4	(a)		ain why the concentrations of the reactants and the products remain constant when librium is established.
			(1 mark)
4	(b)	A hi	gh temperature of over 1000 °C is used in the production of hydrogen by this zion.
4	(b)	(i)	Explain why a high temperature is needed to produce a high equilibrium yield of hydrogen.
			(2 marks)
4	(b)	(ii)	Give one disadvantage of using temperatures much higher than 1000 °C.
			(1 mark)

4	(c)	State and explain how the overall pressure must be changed to produce an increase in the equilibrium yield of hydrogen.
		Change in pressure
		Explanation
		(3 marks)
4	(d)	Explain why the addition of a catalyst has no effect on the equilibrium yield of hydrogen in the reaction.
		(2 marks)

Turn over for the next question

SECTION B

Answer the question below in the space provided on pages 11 to 14 of this booklet. You should answer each part of the question on the separate page indicated. Each part of the question is reprinted at the top of the page.

5 The curve shows the distribution of molecular energies for a mixture of gases which react together. The activation energy for the reaction is E_a

5 (a) Explain what is meant by the term *activation energy*.

(2 marks)

5 (b) State what **Q** represents and what the total area under the curve represents. Explain why the curve starts at the origin and why the shaded area is very small. (4 marks)

5 (c) Describe how the shape of the curve, the area under the curve, the value of E_a and the value of E_a change if the temperature is increased.

Explain why a small increase in temperature results in a large increase in the rate of a reaction.

(7 marks)

5 (d) Explain why a catalyst increases the rate of a reaction.

(2 marks)

END OF QUESTIONS

5 (a) Explain what is meant by the term <i>activation energy</i> .
Write your answer to Question 5(a) on this page.

5 (b) State what Q represents and what the total area under the curve represents. Explain why the curve starts at the origin and why the shaded area is very small.
Write your answer to Question 5(b) on this page.

 5 (c) Describe how the shape of the curve, the area under the curve, the value of E_a and the value of Q change if the temperature is increased. Explain why a small increase in temperature results in a large increase in the rate of a reaction.
Write your answer to Question 5(c) on this page.

5 (d) Explain why a catalyst increases the rate of a reaction.
Write your answer to Question 5(d) on this page.

CHEMISTRY CHM2 Unit 2 Foundation Physical and Inorganic Chemistry

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
C—C	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230-3550
O—H (acids)	2500–3000

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

	=											≡	≥	>	5	₹	0
		_	Key														4.0 He Helium 2
le 4	9.0 Be Beryllium 4	_ (0	relative atomic atomic number	relative atomic mass atomic number		6.9 Li Lithium						10.8 B Boron 5	12.0 C Carbon 6	14.0 N Nitrogen 7	16.0 O Oxygen 8	19.0 F Fluorine 9	20.2 Ne Neon
	24.3 Mg Magnesium 12											27.0 AI Aluminium 13	28.1 Si Silicon	31.0 P Phosphorus 15	32.1 S Sulphur 16	35.5 Cl Chlorine	39.9 Ar Argon 18
<u> </u>		Scool			52.0 Christian	54.9 K	55.8 Fe			1	65.4 Zn	69.7 Ga	72.6 Ge	74.9 AS	1	79.9 Br	83.8 Kr
	_	_	_	vanadium 23	Chromium 24	Manganese 25	26 2	Cobalt 27	Nickei	Copper 29	30 Zinc	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Arypton 36
	87.6 Sr	6.88 ∀	91.2 Zr	95.9 Nb	95.9 Mo	98.9 Tc	101.1 Ru	102.9 Rh	6.4 Pd	107.9 Ag	112.4 Cd	114.8 In	118.7 Sn	121.8 Sb	127.6 Te	126.9 I	131.3 Xe
یب رن	<u> </u>	Yttrium 39	⊏	Niobiun 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	alladium	Silver 47	Cadmium 48	Indium 49		Antimony 51	Tellurium 52	lodine 53	Xenon 54
	137.3 1 Ba	138.9 La	178.5 Hf	180.9 Ta	183.9 186.2 190.2 192.2 19 W Re Os Ir	186.2 Re	190.2 Os	192.2 Ir	5.1 P		200.6 Hg	I .	207.2 Pb	209.0 Bi	210.0 Po	210.0 At	222.0 Rn
ب	Barium L 56	يد∋	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	latinum			Thallium 81	Lead 82	Bismuth 83	_	Astatine 85	Radon 86
	223.0 226.0 227	227 Ac Actinium 89 †															
					140.9		144.9	150.4	52.0		158.9	162.5	164.9	67.3	168.9		175.0
	Lanthar	ides		ΔĘ	in	Neodymium 60	Pm Sm In Promethium Samarium 61 62 62	Samarium 52	Eu Gd Europium Gadolinium 63	Gd Idolinium	Tb Terbium 65	Dysprosium Holmium 66 67 6	Holmium 67	Erbium		Yb Ytterbium 70	Lu Lutetium 71
\sim	Solution Sol	es		232.0 Th Thorium 90	231.0 238.0 Da U Uranium 91 92	238.0 U Uranium 19292	237.0 Neptunium 93	Pu Pu Plutonium 94	237.0 239.1 243.1 24 Np Pu Am Americium Plutonium Americium (93 94 95 96	7.1 Cm Surium	247.1 BK Berkelium 97	247.1 252.1 (252) (257) (258) (259) (260) Bk Cf Es Fm Md No Lr Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium 97 98 99 100 101 102 103	(252) Es Einsteinium 99	(257) Fm Fermium 100	(258) Md Mendelevium 101	(259) Nobelium 102	(260) Lr Lawrencium 103

ハラ	140.1 140.9 144.2 144.9 Ce Pr Nd Pn	_	150.4 Sm	152.0 Eu	157.3 Gd	158.9 Tb	162.5 DV		167.3 Er	168.9 Tm	173.0 Yb	175.0 Lu
Neodymium F 60 6		hium			Gadolinium 64	Terbium 65	Dysprosium 36	Holmium 67		Thulium Ytterbium 69 70	Ytterbium 70	Lutetium 71
232.0 231.0 238.0 237.0 Th Pa U Np	IΛÌ	_		l _	247.1 Cm	247.1 Bk	252.1 Cf	(252) Es	(257) Fm	(258) Md	(259) No	(260) Lr
Thorium Protactinium Uranium N 91 92 93		.≣	Plutonium 94	Americium 95		Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendeleviu 101	Nobelium 102	Lawrencium 103