Surname				Other	Names			
Centre Nu	mber				Candida	ate Number		
Candidate	Signat	ure						·

For Examiner's Use

General Certificate of Education January 2008 Advanced Subsidiary Examination

CHEMISTRY CHM2

Unit 2 Foundation Physical and Inorganic Chemistry

Thursday 10 January 2008 9.00 am to 10.00 am

For this paper you must have

a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer **Section A** and **Section B** in the spaces provided.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answers to the question in Section B in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

For Examiner's Use				
Question	Mark	Question	Mark	
1				
2				
3				
4				
5				
6				
Total (Column 1) ->				
Total (Column 2) —>				
TOTAL				
Examine	r's Initials			

SECTION A

Answer all questions in the spaces provided.

Aque	eous b	promide ions can be detected by using either aqueous silver nitrate or chlorine.
(a)	(i)	State what is observed when aqueous silver nitrate is added to an aqueous solution containing bromide ions. Write an ionic equation for the reaction which occurs.
		Observation
		Ionic equation
	(ii)	State what is observed when an excess of concentrated aqueous ammonia is added to the products formed in part (a)(i).
		(3 marks)
(b)	(i)	State what is observed when chlorine is added to an aqueous solution containing bromide ions. Write an ionic equation for the reaction which occurs.
		Observation
		Ionic equation
	(ii)	Identify one halide ion, other than chloride, which will not react with chlorine and explain why a reaction does not take place.
		Halide ion
		Explanation
		(4 marks)
(c)		nine reacts with cold aqueous sodium hydroxide. The reaction is similar to the ion of chlorine with cold aqueous sodium hydroxide.
	Writ	e an equation for the reaction of bromine with cold aqueous sodium hydroxide.

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

_	=											=	≥	>	>	=	0
1.0 H Hydrogen		_	Key														4.0 He Helium 2
6.9 Li Lithium	9.0 Be Beryllium 4		relative atomic	relative atomic mass		6.9 Li Lithium						10.8 B Boron	12.0 C Carbon	14.0 N Nitrogen	16.0 O Oxygen	19.0 F Fluorine	20.2 Ne Neon
23.0 23 2 23.0 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	H.3 Mg agnesium											_	.8.1 Si Silicon	31.0 P Phosphorus 15	32.1 S Sulphur 16		39.9 Ar Argon
	_	Scandium 21	_ ا	_	_	ı w	Fe 155.8 150 150 150 150 150 150 150 150 150 150	58.9 Co Cobalt 27	58.7 Nickel 28	63.5 Cu Copper 29	65.4 Zn Zinc 30	69.7 Ga Gallium 31	.2.6 Ge Sermanium	74.9 As Arsenic 33	79.0 Se Selenium 34		83.8 Kr Krypton 36
85.5 Rb Rubidium 37	87.6 Srontium 38	88.9 Y Yttrium 39	91.2 Zr Zirconium 40	92.9 Nb Niobium 41	95.9 98.9 101.1 102.9 Mo Tc Ru Rh Molybdenum Technetium Ruthenium Rhodium 42 43 44 45	98.9 Tc Technetium	Ruthenium 44		_	107.9 Ag Silver 47		114.8 In Indium 49		≥	127.6 Te Te Tellurium 52		131.3 Xe Xenon 54
	137.3 Ba Barium 56	138.9 La La Lanthanum 57 *	178.5 Hf Hafnium 72	180.9 Ta Tantalum 73	183.9 W Tungsten 74	186.2 Re Rhenium 75	190.2 Os Osmium 76	192.2 r r Iridium	195.1 Pt Platinum 78	197.0 Au Gold 79	200.6 Hg Mercury 80		207.2 Pb Lead Lead	209.0 Bi Bismuth 83	210.0 Po Polonium 84	210.0 At Astatine 85	222.0 Rn Radon 86
223.0	226.0 Ra Radium 88	227 Ac Actinium 89 †															
thealthanides ada ada ada ada ada ada ada ada ada ad	Lantha	nides		_	140.9 Pr Praseodymium 1	Neodymium 60 (144.9 Pm Promethium 631 (150.4 Sm Samarium 62	152.0 Eu Europium (63	157.3 Gd Gadolinium 64	158.9 Tb Terbium	162.5 164.9 Dy Ho Dysprosium Holmium 66 67	164.9 Ho Holmium 67	167.3 Er bit 58	168.9 Tm Thulium 69	173.0 Yb Ytterbium 70	. Tm Yterbium Lutetium 69 70 70 70 70 70 70 70 70 70 70 70 70 70
rs.eom	3 Actini	səp		Th Thorium 90	Protactinium 91	.236.0 U Uranium 92	Np	Pu Pu Plutonium 94	Americium	Curium 96	Bk Bk Berkelium	247.1 252.1 (252) (252	Einsteinium 99	(257) Fermi 100	Md Mendelevium 101	Nobelium	Lawrencium

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5–5.0

Table 2 Infra-red absorption data

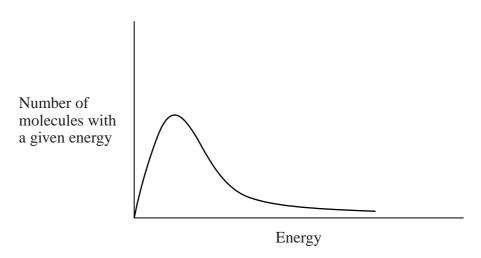
Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

2	When hydrogen and iodine gases are allowed to react, an equilibrium is established
	according to the following equation.

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g) \qquad \Delta H^{\Theta} = -10 \text{ kJ mol}^{-1}$$

(a)	State and explain the effect of decreasing the temperature on the equilibrium yield of hydrogen iodide.
	Effect on yield of hydrogen iodide
	Explanation
(b)	State and explain the effect of increasing the pressure on the equilibrium yield of hydrogen iodide.
	Effect on yield of hydrogen iodide
	Explanation
	(2 marks)
(c)	Explain why an increase in the concentration of hydrogen gas increases the equilibrium yield of hydrogen iodide.
	Explanation
	(1 mark)
(d)	Explain why the addition of a catalyst does not alter the position of equilibrium.
	(2 marks)

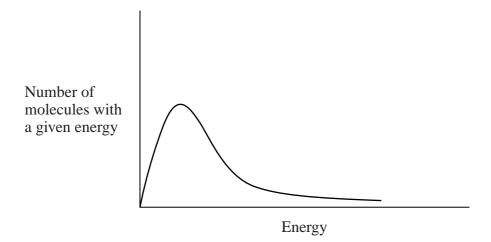
		ndard enthalpy of	combustion.			
						•••••
			•••••			•••••
						 mark
(b)	Write on equation f	or the complete o	ombustion of	otheral C II C	,	mar
(b)	Write an equation for	or the complete c	ombustion of	emanoi, C ₂ H ₅ C	Л	
			•••••		(,	1 1 mai
(c)	The following table	gives some stand	lard enthalpie	s of formation.		
		C ₃ H ₇ OH(l)	$O_2(g)$	CO ₂ (g)	H ₂ O(l)	
	$\Delta H_{\rm f}^{\Theta}/{\rm kJmol}^{-1}$	-315	0	-394	-286	
	propan-1-ol, C ₃ H ₇ Ol	OH $I(1) + 4\frac{1}{2}O_2(g)$	or the enthalpy $\longrightarrow 3CO_2($	g) + $4H_2O(1)$		
				g) + 4H ₂ O(l)		
				g) + 4H ₂ O(1)		
				g) + 4H ₂ O(1)		
				g) + 4H ₂ O(1)		
				g) + 4H ₂ O(1)		
			→ 3CO ₂ (,	g) + 4H ₂ O(1)		mar
(d)		$I(l) + 4\frac{1}{2}O_2(g)$	→ 3CO ₂ ((3	mark


13

(e)	In an experiment 0.92 g of propan-1-ol, C_3H_7OH , was burned and the heat given off used to raise the temperature of 250 g of water. The temperature rise was 16 °C. The specific heat capacity of water is $4.2 \mathrm{J K^{-1} g^{-1}}$.
	Calculate a value for the enthalpy of combustion of one mole of propan-1-ol.
	(4 marks)
(f)	Suggest why the experimental value of the enthalpy of combustion obtained in part (e) is less reliable than the value obtained in part (c).
	(1 mark)

Turn over for the next question

- 4 The Figures below represent the distribution of molecular energies for one mole of gas at 300 K.
 - (a) On **Figure 1** below draw a curve to show the distribution of energies for one mole of gas at a higher temperature.


Figure 1

(2 marks)

(b) On **Figure 2** below draw a curve to show the distribution of energies for two moles of gas at 300 K.

Figure 2

(2 marks)

(c)

Gase	es A and B react together.
(i)	Explain why collisions between molecules of ${\bf A}$ and ${\bf B}$ do not always lead to a reaction.
(ii)	Explain why increasing the temperature by a small amount has a much bigger effect on the rate of reaction than increasing the pressure by a small amount.
(iii)	Explain why adding a catalyst will increase the rate of reaction between gases ${\bf A}$ and ${\bf B}$.
	(5 marks)

Turn over for the next question

5	(a)	Dedu	ace the oxidation state of S in SO_3^{2-} and in SO_4^{2-}
		Oxid	lation state of S in SO_3^{2-}
		Oxid	lation state of S in SO_4^{2-}
			(2 marks)
	(b)	A re	dox reaction occurs when Cl_2 reacts with SO_3^{2-} ions in aqueous solution.
		(i)	Write a half-equation for the conversion of Cl ₂ into Cl ⁻ ions.
		(ii)	Write a half-equation for the conversion of aqueous SO_3^{2-} ions into SO_4^{2-} ions.
		(iii)	Hence, write an overall equation for the reaction between Cl_2 and SO_3^{2-} ions.
		(111)	Thence, write an overall equation for the reaction between Ci2 and 503 fons.
		(iv)	Deduce the role of SO_3^{2-} ions in this overall reaction.
			(4 marks)

SECTION B

Answer Question 6 in the space provided on pages 11–12.

6	(a)	Iron can be extracted from iron(III) oxide by carbon reduction in the Blast Furnace. The iron obtained contains impurities of carbon, sulphur and phosphorus. These impurities are removed from the molten iron that is taken from the Blast Furnace. Describe how each of the impurities is removed. Write equations for any reactions
		which occur.
		Suggest a reason why the sulphur impurity is removed first. (9 marks)
	(b)	Explain why carbon is not used as the reducing agent to extract titanium from titanium(IV) oxide.
		(2 marks)
	(c)	State why extracting aluminium from its oxide ore is expensive and why carbon reduction is not used. Write half-equations for the reactions which occur at the electrodes when aluminium is extracted from its oxide.
		(4 marks)
END OF QUESTIONS		
	••••••	
	••••••	
• • • • • •	••••••	
• • • • • •	•••••	
• • • • • • •	••••••	
• • • • • •	•••••	
• • • • • • •		
• • • • • • •	••••••	
• • • • • • •	•••••	

www.theallpapers.com
