Surname				Other	Names			
Centre Nu	mber				Candida	ate Number		
Candidate	Signat	ure						·

General Certificate of Education June 2006 Advanced Subsidiary Examination

CHEMISTRY CHM1 Unit 1 Atomic Structure, Bonding and Periodicity

Wednesday 7 June 2006 9.00 am to 10.00 am

For this paper you must have

a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer questions in **Section A** and **Section B** in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Your answers to the question in **Section B** should be written in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

F	or Exam	iner's Us	se		
Number	Mark	Number	Mark		
1					
2					
3					
4					
5					
Total (Column 1) ->					
Total (Co					
TOTAL					
Examine	r's Initials				

SECTION A

Answer all questions in the spaces provided.

(a)	State	e, in t	erms of the fundamental par	rticles pres	sent, the n	neaning of	f the term <i>isotopes</i> .
	•••••	••••••					(1 mark
(b)		S. D	contains one more proton the deduce the symbol, including				
		•••••					(2 marks
(c)			below gives the relative abuf germanium, Ge.	undance o	f each isot	cope in a r	mass spectrum of a
			m/z	70	72	74	
			Relative abundance (%)	24.4	32.4	43.2	
	(i)		mplete the electron arrangem				
	(ii)		the data above to calculate manium. Give your answer				nis sample of
				•••••	••••••	•••••	
				•••••	••••••	•••••	

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

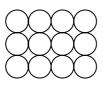
_	_											≡	≥	>	5	=	0
			Key														4.0 He Helium 2
9.0 Be			relative a	relative atomic mass		6.9 Li						10.8 B	12.0 C	14.0 Z	16.0 O		20.2 Ne
Beryllium 4		-	atomic number	umber —		Lithium 3						Boron 5		_	Oxygen 8	Fluorine 9	Neon 10
24.3 Mg												27.0 Al	^{28.1} Si	31.0 P	32.1 S		39.9 Ar
_												Ε	Silicon 14	Phosphorus Sulphur 15	Sulphur 16		Argon 18
40.1 45.0 Ca Sc	5.0 Sc		47.9 Ti	50.9 V	52.0 Ç	54.9 Mn	55.8 Fe	58.9 S	58.7 Ni	. J	65.4 Zn	69.7 Ga	72.6 Ge	74.9 As	79.0 Se	79.9 Br	83.8 Kr
Ε	Scandiu 21	_	_	Vanadium 23	Chromium 24	Manganese 25	Iron 26	Cobalt 27	Nickel 28	opper		Gallium 31		Arsenic 33	Selenium 34	Φ	Krypton 36
87.6 88.9 Sr	38.9		91.2 Zr	92.9 Nb	95.9 Mo	98.9 Tc	101.1 Ru	102.9 Rh	106.4 Pd	6. b	112.4 Cd	114.8 n	118.7 Sn	121.8 Sb	127.6 Te	126.9 –	131.3 Xe
Strontium Yttrium	Yttriu 39		⊏	Viob Viob	Molybdenum	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	iver	Cadmium 48	Indium 49		Antimony 51	Tellurium	lodine 53	Xenon 54
S3 Ba			178.5 Hf	180.9	183.9 W	186.2 Re	190.2 Os	192.2 Ir	195.1 Pt	o. A	200.6 Ha	204.4 T		209.0 Bi	210.0 Po	210.0 At	222.0 Rn
Lant 57	antha 37	mu*	Hafnium 72	Tantalum 73	Ilum Tungsten Rhenium Osmium Iridium Platinum G 74 75 76 77 78 79 79	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	plog	Mercury 80	E	Lead 82		Polonium 84	a)	Radon 86
226.0 227 Ra Ac Radium Actinium 88	227 Ac tini 89	, § +															
				140 1	140 9	44.2	, , , ,	150.4	152.0	1573	1589	162 5			168.0		175.0
Lanthanides	ides		-	4	Praseodymium P	Nd Neodymium	Promethium	Samarium	Europium	Gadolinium	Tb Terbium	Dysprosium Holmium 66 67	_	Erbium 68	Tmulium 69	Yb Ytterbium 70	Lu Lutetium 71
• - 103 Actinides	es			2.0 Th norium	231.0 238.0 237.0 239.1 243.1 247.1 247.1 Pa Np Pu Am Cm Bk Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium 04 05 03 04 05 07 07	238.0 2 U Uranium 1	237.0 NP Neptunium	239.1 Pu Plutonium	243.1 Am Americium	247.1 Cm Curium	247.1 BK Berkelium	247.1 252.1 (252) (257) Bk Cf Es Fm Berkelium Californium Einsteinium Fermium 07 08 00 100	(252) Es Einsteinium	(257) Fm Fermium	(258) (259) (260) Md No Lr Mendelevium Nobelium Lawrencium 101 102 103 10	(259) No Nobelium	(260) Lr Lawrencium
			_		-	, T		10	2	96		96		3	-	70	3

	140.9 144.2 Pr Nd	144.2 Nd	u	150.4 Sm	152.0 Eu	157.3 Gd	158.9 Tb	162.5 Dv	162.5 164.9 Dy Ho	167.3 Er	168.9 173.0 Tm Yb	173.0 Yb	175.0 Lu
	Praseodymium	um Praseodymium Neodymium Prome	thium	Samarium	n Europium C	Sadolinium	Terbium	Dysprosium	Holminm	Erbium	Thulium	Ytterbium	Lutetium
80	29	09		62	63	4	35	99	29	89	69	70	71
Ė	231.0				_	247.1	247.1	252.1	(252)	(257)	(258)	(259)	(260)
	Th Pa U		S N	Pu	Am	CB	ਲ	ర	Ë	Æ	βg	2	ڐ
Thorium	Protactinium Uranium	⊑		⊆	Americium	Curium	Berkelium	Californium	Einsteinium	Ferminm	Mendelevium	Nobelium	Lawrencium
		92	93	94	92	96	37	86	66	100	101	102	103

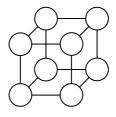
Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5-5.0


Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
C—O	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000


(111)	State what is adjusted in a mass spectrometer in order to direct ions with different m/z values onto the detector. Explain your answer.
	Adjustment
	Explanation
(iv)	One of the isotopes of Ge, given in the table in part (c), has an ion that forms a small peak in the mass spectrum which is indistinguishable from a peak produced by $^{36}S^{+}$ ions. Identify this Ge ion and explain your answer.
	Ion
	Explanation
	(8 marks)

Turn over for the next question

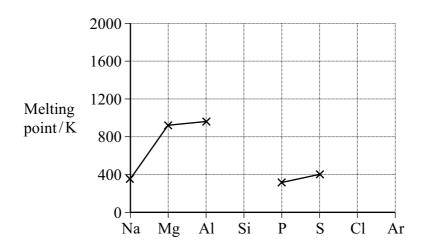
- 2 At room temperature, both sodium metal and sodium chloride are crystalline solids which contain ions.
 - (a) On the diagrams for sodium metal and sodium chloride below, mark the charge for each ion.

Sodium chloride

(2 marks)

(b)	(i)	Explain how the ions are held together in solid sodium metal.
	(ii)	Explain how the ions are held together in solid sodium chloride.
	(iii)	The melting point of sodium chloride is much higher than that of sodium metal. What can be deduced from this information?
		(3 marks)
(c)		pare the electrical conductivity of solid sodium metal with that of solid sodium ride. Explain your answer.
	Com	parison
	•••••	
	Expl	anation

(3 marks)


12

(d)	Expl	ain why sodium metal is malleable (can be hammered into shape).
	•••••	
	•••••	(1 mark)
(e)		um chlorate(V), NaClO ₃ , contains 21.6% by mass of sodium, 33.3% by mass of rine and 45.1% by mass of oxygen.
	(i)	Use the above data to show that the empirical formula of sodium chlorate(V) is $NaClO_3$
	(ii)	Sodium chlorate(V) may be prepared by passing chlorine into hot aqueous sodium hydroxide. Balance the equation for this reaction below.
		$Cl_2 +$ $NaOH \longrightarrow$ $NaCl +$ $NaClO_3 + 3H_2O$
		(3 marks)

Turn over for the next question

3			rine, C ₃ H ₅ N ₃ O ₉ , is an explosive which, on detonation, decomposes rapidly to form nber of gaseous molecules. The equation for this decomposition is given below.
		_	$4C_3H_5N_3O_9(1) \longrightarrow 12CO_2(g) + 10H_2O(g) + 6N_2(g) + O_2(g)$
	(a)	A sa	mple of nitroglycerine was detonated and produced 0.350 g of oxygen gas.
		(i)	State what is meant by the term <i>one mole</i> of molecules.
		(ii)	Calculate the number of moles of oxygen gas produced in this reaction, and hence deduce the total number of moles of gas formed. Moles of oxygen gas
			Total moles of gas
		(iii)	Calculate the number of moles, and the mass, of nitroglycerine detonated.
			Moles of nitroglycerine
			Mass of nitroglycerine
			(7 marks)
	(b)	The	cond sample of nitroglycerine was placed in a strong sealed container and detonated. volume of this container was 1.00×10^{-3} m ³ . The resulting decomposition produced al of 0.873 mol of gaseous products at a temperature of 1100 K.
		deto	the ideal gas equation and use it to calculate the pressure in the container after nation. gas constant $R = 8.31 \mathrm{J K^{-1} mol^{-1}}$)
		Idea	gas equation
		Pres	sure

4 (a) The diagram below shows the melting points of some of the elements in Period 3.

- (i) On the diagram, use crosses to mark the approximate positions of the melting points for the elements silicon, chlorine and argon. Complete the diagram by joining the crosses.
- (ii) By referring to its structure and bonding, explain your choice of position for the melting point of silicon.

(iii) Explain why the melting point of sulphur, S₈, is higher than that of phosphorus, P₄

(8 marks)

(b) State and explain the trend in melting point of the Group II elements Ca–Ba.

Trend

Explanation

.....

(3 marks)

SECTION B

Answer the question below in the space provided.

5 (a) State the trends in solubility of the hydroxides and of the sulphates of the Group II elements Mg–Ba.

Describe a chemical test you could perform to distinguish between separate aqueous solutions of sodium sulphate and sodium nitrate. State the observation you would make with each solution. Write an equation for any reaction which occurs.

(6 marks)

(b) The equation below shows the reaction between boron trifluoride and a fluoride ion.

$$BF_3 + F^- \longrightarrow BF_4^-$$

- (i) Draw diagrams to show the shape of the BF₃ molecule and the shape of the BF₄ ion. In each case, name the shape. Account for the shape of the BF₄ ion and state the bond angle present.
- (ii) In terms of the electrons involved, explain how the bond between the BF₃ molecule and the F⁻ ion is formed. Name the type of bond formed in this reaction.

(9 marks)

END OF QUESTIONS

•••••
•••••
•••••
•••••
 •••••
•••••
 •••••
••••••
•••••