Surname				Other	Names			
Centre Nu	Centre Number				Candida	ate Number		
Candidate	Signat	ure						

Leave blank

General Certificate of Education June 2005 Advanced Subsidiary Examination

CHEMISTRY CHM1 Unit 1 Atomic Structure, Bonding and Periodicity

Wednesday 8 June 2005 Morning Session

In addition to this paper you will require: a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in Section A and Section B in the spaces provided.
 All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.
- This paper carries 30 per cent of the total marks for AS. For Advanced Level this paper carries 15 per cent of the total marks.
- You are expected to use a calculator where appropriate.
- The following data may be required. Gas constant $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- Your answers to the questions in **Section B** should be written in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

For Examiner's Use					
Number	Mark	Number	Mark		
1					
2					
3					
4					
5					
6					
7					
Total (Column	1)	→			
Total (Column	2)	\rightarrow			
TOTAL					
Examine	r's Initials				

SECTION A

2

Answer all questions in the spaces provided.

(a)		relative abundances of these isotone mass spectrometer, the sample				
	(i)	State what is meant by the term				
	(ii)	Explain how, in a mass spectron is measured.	neter, ion	s are det	ected and	I how their abundance
		How ions are detected				
		How abundance is measured				
						(5 marks)
(b)	(i)	Define the term relative atomic	mass of a	ın elemen	ıt.	
	(ii)	The relative abundances of the follows.	isotopes i	n this san	nple of iro	on were found to be as
		m/z	54	56	57	
		Relative abundance (%)	5.8	91.6	2.6	
		Use the data above to calculat Give your answer to one decim		ntive aton	nic mass	of iron in this sample.
			•••••			

The Periodic Table of the Elements

The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

	E						uc.		<u> </u>		<u> </u>	
0	4.0 He Helium 2	20.2 Ne	Neon 10	39.9 A	Argon 18	83.8 7.	Krypte 36	131.3 Xe	Xeno 54	222.0 Rn	Rado 86	
=		ூட	uorine	್ದರ	Chlorine 17	79.9 Br	Bromine 35	126.9 –	lodine 53	210.0 At	Astatine 85	
5		16.0 O	Oxygen 8	32.1 S	Sulphur 16	79.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	Polonium 84	
>		14.0 Z	Nitrogen 7	31.0 P	Phosphorus 15	74.9 As	Arsenic 33	121.8 Sb	Antimony 51	209.0 Bi	Bismuth 83	
≥		ا2.0 د	n Carbon Nitrogen Oxygen Fl	28.1 Si	Silicon 14	72.6 Ge	Germanium 32	118.7 Sn	Tin 50	207.2 Pb	Lead 82	
=		10.8 B	Boron 5	27.0 Al	Aluminium 13	69.7 Ga	Gallium 31	114.8 In	Indium 49	204.4 TI	Thallium 81	
						65.4 Zn	Zinc 30	112.4 Cd	Cadmium 48	200.6 Hg	Mercury 80	
						63.5 Cu		107.9 Ag		197.0 Au	Gold 79	
						58.7 N i	Nickel 28	106.4 Pd	Palladium 46	195.1 Pt	Platinum 78	
						58.9 Co	Cobalt 27	102.9 Rh	Rhodium 45	192.2 Ir		
						55.8 Fe	Iron 26	101.1 Ru	Ruthenium 44	190.2 Os		
		6.9 Li	Lithium 3			54.9 Mn		98.9 Tc		186.2 Re	_	
						52.0 Ç	Chromium 24	95.9 Mo	Molybdenum 42	183.9 W	Tungsten 74	
		relative atomic mass -	umber —			50.9 V	Vanadium 23	92.9 Nb	Niobium 41	180.9 Ta	Tantalum 73	
	Key	relative a	atomic number			47.9 Ti	Titanium 22	91.2 Zr	Zirconium 40	178.5 H	Hafnium 72	
						45.0 Sc	Scandium 21	88.9 ≺	Yttrium 39	138.9 La	Lanthanum 57 *	227 Actinium 89 †
=		9.0 Be	Beryllium 4	24.3 Mg		40.1 Ca		87.6 Sr	Strontium 38	137.3 Ba	Barium 56	226.0 Ra Radium 88
_	1.0 H Hydrogen	6.9 Li		23.0 Na		39.1 X	_	85.5 Rb		132.9 Cs	_	223.0 Fr Francium 87

740.1 S	140.1 140.9 144.2 144 Ce Pr Nd	144.2 Nd	9.1 Pa	150.4 Sm	150.4 152.0 1 Sm Eu	157.3 Gd	158.9 Tb	162.5 Dy	64.9 Ho	167.3 Er	168.9 Tm	173.0 Yb	175.0 Lu
Cerium 58	Praseodymium 59	Neodymium 60	methium	Samarium 62	Europium 63	Gadolinium Terbium 65	Terbium 65	Dysprosium 66	Holmium 7		Thulium Ytterbium 69 70	Ytterbium 70	Lutetium 71
232.0 Th	232.0 231.0 238.0 237.0 Th Pa U Np	238.0 U		9.1 Pu	243.1 Am	247.1 Cm	247.1 Bk	252.1 Cf	(252) Es	(257) Fm	(258) Md	(259) No	(260) Lr
Thorium 1	Protactinium 91	rotactinium Uranium 11 92		Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Lawrenciun 103

* 58 - 71 Lanthanides

† 90 – 103 Actinides

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
RCOCH ₃	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5–5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850-3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

(c)	(i)	Give the electron arrangement of an Fe ²⁺ ion.
	(ii)	State why iron is placed in the d block of the Periodic Table.
	(iii)	State the difference, if any, in the chemical properties of isotopes of the same element. Explain your answer.
		Difference
		Explanation

5

 $\left(\frac{1}{13}\right)$

(4 marks)

TURN OVER FOR THE NEXT QUESTION

Turn over

2 (a) Lead(II) nitrate may be produced by the reaction between nitric acid and lead(II) oxide as shown by the equation below.

$$PbO + 2HNO_3 \rightarrow Pb(NO_3)_2 + H_2O$$

An excess of lead(II) oxide was allowed to rea Calculate the maximum mass of lead(II) nitreaction.	
	(4 marks)

(b) An equation representing the thermal decomposition of lead(II) nitrate is shown below.

$$2Pb(NO_3)_2(s) \ \to \ 2PbO(s) \ + \ 4NO_2(g) \ + \ O_2(g)$$

A sample of lead(II) nitrate was heated until the decomposition was complete. At a temperature of 500 K and a pressure of 100 kPa, the total volume of the gaseous mixture produced was found to be $1.50\times10^{-4}\,\mathrm{m}^3$.

(i) State the ideal gas equation and use it to calculate the total number of moles of gas produced in this decomposition.

(The consequent R = 8.21 LV⁻¹ mol⁻¹)

(The gas constant $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$)

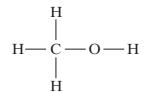
(ii)	Deduce the number of moles, and the mass, of NO_2 present in this gaseous mixture. (If you have been unable to calculate the total number of moles of gas in part (b)(i), you should assume this to be 2.23×10^{-3} mol. This is not the correct answer.)
	Number of moles of NO ₂
	Mass of NO ₂
	(7 marks)

TURN OVER FOR THE NEXT QUESTION

Turn over

3

(a)		n aluminium is added to an aqueous solution of copper(II) chloride, CuCl ₂ , copper l and aluminium chloride, AlCl ₃ , are formed. Write an equation to represent this ion.
	•••••	(1 mark)
(b)	(i)	State the general trend in the first ionisation energy of the Period 3 elements from Na to Ar.
	(ii)	State how, and explain why, the first ionisation energy of aluminium does not follow this general trend.
		(4 marks)
(c)		the equation, including state symbols, for the process which represents the second ation energy of aluminium.
	•••••	(1 mark)
(d)	State	and explain the trend in the melting points of the Period 3 metals Na, Mg and Al.
	Tren	d
	Expl	anation
		(3 marks)



which ammonia, NH ₃ , forms ammonium ion (a) Give the name of the type of bond	s, NH_4 formed when phosphine reacts with an H^+ ion.
Explain how this bond is formed.	
Type of bond	
Explanation	
	(3 marks)
phosphonium ion.	airs of electrons, of a phosphine molecule and of a
Give the name of the shape of the phoin the phosphonium ion.	osphine molecule and state the bond angle found
	osphine molecule and state the bond angle found $PH_4^+ \label{eq:PH4}$
in the phosphonium ion.	

7

Turn over ▶

5 (a) Methanol has the structure

Explain why the O–H bond in a methanol molecule is polar.
(2 marks)

(b) The boiling point of methanol is $+65\,^{\circ}\text{C}$; the boiling point of oxygen is $-183\,^{\circ}\text{C}$. Methanol and oxygen each have an M_{r} value of 32. Explain, in terms of the intermolecular forces present in each case, why the boiling point of methanol is much higher than that of oxygen.

(3 marks)

SECTION B

Answer the questions below in the space provided on pages 11 to 16 of this booklet.

6 Diamond and graphite are both forms of carbon.

Diamond is able to scratch almost all other substances, whereas graphite may be used as a lubricant

Diamond and graphite both have high melting points.

Explain each of these properties of diamond and graphite in terms of structure and bonding. Give **one** other difference in the properties of diamond and graphite.

(9 marks)

7 This question concerns the chemistry of the Group II metals Mg to Ba.

An aqueous solution of a Group II metal chloride **XCl.** forms a white pred

An aqueous solution of a Group II metal chloride, $\mathbf{X}Cl_2$, forms a white precipitate when dilute aqueous sodium hydroxide is added. A separate sample of the solution of $\mathbf{X}Cl_2$ does **not** form a precipitate when dilute aqueous sodium sulphate is added.

An aqueous solution of a different Group II metal chloride, **Y**Cl₂, does **not** form a precipitate when dilute aqueous sodium hydroxide is added. A separate sample of the solution of **Y**Cl₂ forms a white precipitate when dilute aqueous sodium sulphate is added.

Suggest identities for the Group II metals **X** and **Y**. Write equations, including state symbols, for the reactions which occur.

(6 marks)

END OF QUESTIONS

Turn over

•••••
••••••
••••••
•••••
•••••
••••••
•••••
••••••
••••

 •••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
•••••
 •••••
•••••
•••••
•••••

Turn over ▶

_

Turn over ▶

••••
••••
••••
••••
••••
••••
••••
••••
••••
••••
••••
••••
••••
 ••••
••••
••••
••••
••••
••••
••••
••••
••••
 ••••
••••

Copyright © 2005 AQA and its licensors. All rights reserved.