Surname				Other	Names				
Centre Nu	mber					Candida	ate Number		
Candidate	Signat	ure							·

For Examiner's Use

General Certificate of Education January 2008 Advanced Subsidiary Examination ASSESSMENT and QUALIFICATIONS
ALLIANCE

CHEMISTRY CHM1 Unit 1 Atomic Structure, Bonding and Periodicity

Thursday 10 January 2008 9.00 am to 10.00 am

For this paper you must have

· a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in Section A and Section B in the spaces provided.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Your answers to the questions in **Section B** should be written in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

F	or Exam	iner's Us	е		
Question	Mark	Question	Mark		
1					
2					
3					
4					
5					
6					
Total (Column 1) ->					
Total (Column 2) —>					
TOTAL					
Examine	r's Initials				

SECTION A

Answer all questions in the spaces provided.

1	Rela	tive at	comic mass can be determined using a mass spectrometer.	
	(a)	Defi	ne the term relative atomic mass.	
		•••••		(2 marks)
	(b)		btain the mass spectrum of an element, a gaseous sample of the element onised. The ions produced are then accelerated, deflected and detected.	must first
		(i)	State what is used to accelerate ions in a mass spectrometer.	
		(ii)	State what is used to deflect ions in a mass spectrometer.	
		(iii)	Explain how the ions are detected in a mass spectrometer.	
				(3 marks)

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

_	=											=	≥	>	>	=	0
1.0 H Hydrogen		_	Key														4.0 He Helium 2
6.9 Li Lithium	9.0 Be Beryllium 4		relative atomic	relative atomic mass		6.9 Li Lithium						10.8 B Boron	12.0 C Carbon	14.0 N Nitrogen	16.0 O Oxygen	19.0 F Fluorine	20.2 Ne Neon
23.0 23 2 23.0 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	H.3 Mg agnesium											_	.8.1 Si Silicon	31.0 P Phosphorus 15	32.1 S Sulphur 16		39.9 Ar Argon
	_	Scandium 21	_ ا	_	_	ı w	Fe 155.8 150 150 150 150 150 150 150 150 150 150	58.9 Co Cobalt 27	58.7 Nickel 28	63.5 Cu Copper 29	65.4 Zn Zinc 30	69.7 Ga Gallium 31	.2.6 Ge Sermanium	74.9 As Arsenic 33	79.0 Se Selenium 34		83.8 Kr Krypton 36
85.5 Rb Rubidium 37	87.6 Srontium 38	88.9 Y Yttrium 39	91.2 Zr Zirconium 40	92.9 Nb Niobium 41	95.9 98.9 101.1 102.9 Mo Tc Ru Rh Molybdenum Technetium Ruthenium Rhodium 42 43 44 45	98.9 Tc Technetium	101.1 Ru Ruthenium 44		_	107.9 Ag Silver 47		114.8 In Indium 49		≥	127.6 Te Tellurium 52		131.3 Xe Xenon 54
	137.3 Ba Barium 56	138.9 La La Lanthanum 57 *	178.5 Hf Hafnium 72	180.9 Ta Tantalum 73	183.9 W Tungsten 74	186.2 Re Rhenium 75	190.2 Os Osmium 76	192.2 r r Iridium	195.1 Pt Platinum 78	197.0 Au Gold 79	200.6 Hg Mercury 80		207.2 Pb Lead Lead	209.0 Bi Bismuth 83	210.0 Po Polonium 84	210.0 At Astatine 85	222.0 Rn Radon 86
223.0 Fr MMN Fr	226.0 Ra Radium 88	227 Ac Actinium 89 †															
thealthanides ada ada ada ada ada ada ada ada ada ad	Lantha	nides		_	140.9 Pr Praseodymium 1	Neodymium 60 (144.9 Pm Promethium 631 (150.4 Sm Samarium 62	152.0 Eu Europium (63	157.3 Gd Gadolinium 64	158.9 Tb Terbium	162.5 164.9 Dy Ho Dysprosium Holmium 66 67	164.9 Ho Holmium 67	167.3 Er bit 58	168.9 Tm Thulium 69	173.0 Yb Ytterbium 70	. Tm Yterbium Lutetium 69 70 70 70 70 70 70 70 70 70 70 70 70 70
rs.eom	3 Actini	səp		Th Thorium 90	Protactinium 91	.236.0 U Uranium 92	Np	Pu Pu Plutonium 94	Americium	Curium 96	Bk Berkelium	247.1 252.1 (252) (252	Einsteinium 99	(257) Fermi 100	Md Mendelevium 101	Nobelium	Lawrencium

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5–5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

(c) A sample of chlorine was placed in a mass spectrometer. In this sample of chlorine, 75 % of the atoms were ³⁵Cl atoms and 25 % were ³⁷Cl atoms.

The mass spectrometer detected only Cl^+ ions and Cl^{2+} ions. The spectrum obtained contained four peaks. The diagram below is an incomplete spectrum, showing only the peak produced by the $^{35}Cl^+$ ions.

- (i) Label both axes on the diagram.
- (ii) Complete this diagram to show the remaining three peaks in the mass spectrum of the chlorine sample.

(5 marks)

(E memes)

10

Turn over for the next question

2 Sodium carbonate neutralises hydrochloric acid as shown in the equation below.

$$Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2$$

(a) Sodium carbonate is used to neutralise a 100 cm³ sample of 1.75 mol dm⁻³ hydrochloric acid.
 (i) Calculate the number of moles of HCl in the 100 cm³ sample of 1.75 mol dm⁻³

hydrochloric acid.

(ii) Deduce the number of moles, and hence calculate the mass, of Na_2CO_3 ($M_r = 106.0$) required to neutralise this sample of hydrochloric acid.

(3 marks)

(b) Hydrated sodium carbonate has the formula Na₂CO₃.10H₂O

(i)	Calculate the percentage, by mass, of Na ₂ CO ₃ in hydrated sodium carbonate.

.....

(ii) Calculate the mass of hydrated sodium carbonate required to neutralise 0.267 mol of hydrochloric acid.

(4 marks)

(c)	A sample of sodium carbonate reacted with hydrochloric acid to produce $7.75 \times 10^{-2} \text{mol}$ of CO_2
	State the ideal gas equation and use it to calculate the volume of CO_2 produced, at 298 K and 101 kPa, in this reaction.
	Ideal gas equation
	Volume of CO ₂ produced
	(4 marks)

Turn over for the next question

3	(a)	A Pe	eriod 3 element, E , forms an w.	ion E ²⁻ v	which has	the elec	tron arra	ngemen	t shown
			$1s^2$	$2s^22p^63s^2$	2 3p ⁶				
		Give	the electron arrangement of	an atom	of eleme	nt ${f E}$ and	identify	this elei	ment.
		Elec	tron arrangement of an atom	of E					
		Iden	tity of E						
									(2 marks)
	(b)	Ther	e is a trend in the electroneg	ativity of	the Perio	od 3 elen	nents Na	to Cl	
		(i)	Define the term <i>electronego</i>	itivity.					
				•••••	••••••	••••••	•••••	•••••	•••••
				•••••	•••••	•••••	•••••	•••••	
				•••••	•••••	•••••	•••••	•••••	
		(ii)	State and explain the trend Na to Cl	in the ele	ectronega	tivity of	the Perio	od 3 elen	nents
			Trend						
			Explanation	•••••••				••••••	
					•••••	•••••	•••••	•••••	•••••
				••••••	••••••	••••••	••••••	••••••	(5 marks)
	(c)	Som	e electronegativity values are	e given be	elow.				
				Н	F	Cl	Br	I	
			Electronegativity value	2.1	4.0	3.0	2.8	2.5	-
		(i)	Explain why the covalent b	ond in H	F is pola	r.			
		(ii)	State and explain the trend halides HF, HCl, HBr and I	-	y of the	covalent	bonds in	the hyd	rogen
			Trend						
			Explanation						
			r						

www.theallpapers.com

(d) The boiling points of some hydrogen halides are shown in the table below.

Hydrogen halide	HF	HC1	HBr	HI
Boiling point/K	293	188	206	238

Explain, in terms of the intermolecular forces present, why

	(i)	the boiling point of HF is much higher than those of the other hydrogen halides.
	(ii)	the boiling points increase from HCl to HI
		(6 marks)
(e)	Chlo	ride ions are polarised by cations.
	(i)	State the meaning of the term <i>polarised</i> as applied to a Cl ⁻ ion.
	(ii)	State a feature of a cation that would cause the Cl ⁻ ion to be polarised strongly.

follo	lution contains both sodium carbonate and sodium sulphate. Dilute hydrochloric acid, wed by dilute aqueous barium chloride, is added to this solution to confirm the presence arbonate ions and sulphate ions.
(a)	State what would be observed when an excess of dilute hydrochloric acid is added to this mixture. Identify the product responsible for this observation. Write an equation for the reaction which occurs.
	Observation
	Product
	Equation
	(3 marks)
(b)	State what would be observed when an excess of dilute aqueous barium chloride is added to the solution formed in part (a). Identify the product responsible for this observation. Write an equation for the reaction which occurs.
	Observation
	Product
	Equation
	(3 marks)

SECTION B

Answer **both** questions 5 and 6 in the space provided on pages 12–16.

5	(a)		
		angle in the NH_3 molecule is less than that in the NH_4^+ ion. (4 marks)	
	(b)	Draw the shape, including any lone pairs of electrons, of the NH ₂ ion. Name the shape	
		produced by the arrangement of atoms in the NH_2^- ion. (2 marks)	
6	(a)	Explain, in terms of its structure and bonding, why the melting point of silicon is very	
		high. (4 marks)	
	(b)	Select any two of the Period 3 elements phosphorus, sulphur and chlorine. State and	
		explain which of your selected elements has the higher melting point. (5 marks)	
		END OF QUESTIONS	
•••••	••••••		
•••••	•••••		
•••••	••••••		
•••••	•••••		
•••••	•••••		
•••••	•••••		
•••••	••••••		
•••••			
•••••			
•••••			
•••••	•••••		

	•••••
	••••••
	•••••
•••••••••••••••••••••••••••••••••••••	•••••

••••••

	•••••
	••••••
	•••••
••••••••••••••••••••••••••••••••••••	•••••