Surname				Other	Other Names				
Centre Nu	mber				Candida	ate Number			
Candidate	Signat	ure							·

For Examiner's Use

General Certificate of Education January 2007 Advanced Subsidiary Examination ASSESSMENT and QUALIFICATIONS
ALLIANCE

CHEMISTRY CHM1 Unit 1 Atomic Structure, Bonding and Periodicity

Thursday 11 January 2007 9.00 am to 10.00 am

For this paper you must have

a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in Section A and Section B in the spaces provided.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- Write your answers to the questions in **Section B** in continuous prose, where appropriate. You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

For Examiner's Use							
Question	Question	Mark					
1							
2							
3							
4							
5							
6							
Total (Column 1)							
Total (Column 2) —>							
TOTAL							
Examine	r's Initials						

SECTION A

Answer all questions in the spaces provided.

1

(a)	Comp	plete the f	Collowing tab	le.		
				Relative mass	Relative charge	
			Proton			
			Electron			
		·	,			(2 marks)
(b)				protons and twicing the mass num		ns as an atom of ¹⁹ F
	•••••					(2 marks)
(c)	The A	Al ³⁺ ion a	nd the Na ⁺ io	on have the same	electron arrangem	nent.
	(i)	Give the	electron arra	angement of these	ions.	
	(ii)	Explain from the	why more en Na ⁺ ion.	ergy is needed to	remove an electro	on from the Al ³⁺ ion than
		•••••	•••••	•••••		(3 marks)
(d)	In a r	nass spec	trometer, gas	seous atoms are ic	onised. These ions	s are then accelerated.
	(i)	Explain l	now atoms ar	re ionised in a ma	ss spectrometer.	
		•••••		•••••		
		•••••				

The Periodic Table of the Elements

■ The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

_	=											=	≥	>	>	=	0
1.0 H Hydrogen		_	Key														4.0 He Helium 2
6.9 Li Lithium	9.0 Be Beryllium 4		relative atomic	relative atomic mass		6.9 Li Lithium						10.8 B Boron	12.0 C Carbon	14.0 N Nitrogen	16.0 O Oxygen	19.0 F Fluorine	20.2 Ne Neon
23.0 23 2 23.0 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	H.3 Mg agnesium											_	.8.1 Si Silicon	31.0 P Phosphorus 15	32.1 S Sulphur 16		39.9 Ar Argon
	_	Scandium 21	_ ا	_	_	ı w	Fe 155.8 150 150 150 150 150 150 150 150 150 150	58.9 Co Cobalt 27	58.7 Nickel 28	63.5 Cu Copper 29	65.4 Zn Zinc 30	69.7 Ga Gallium 31	.2.6 Ge Sermanium	74.9 As Arsenic 33	79.0 Se Selenium 34		83.8 Kr Krypton 36
85.5 Rb Rubidium 37	87.6 Srontium 38	88.9 Y Yttrium 39	91.2 Zr Zirconium 40	92.9 Nb Niobium 41	95.9 98.9 101.1 102.9 Mo Tc Ru Rh Molybdenum Technetium Ruthenium Rhodium 42 43 44 45	98.9 Tc Technetium	101.1 Ru Ruthenium 44		_	107.9 Ag Silver 47		114.8 In Indium 49		≥	127.6 Te Te Tellurium 52		131.3 Xe Xenon 54
	137.3 Ba Barium 56	138.9 La La Lanthanum 57 *	178.5 Hf Hafnium 72	180.9 Ta Tantalum 73	183.9 W Tungsten 74	186.2 Re Rhenium 75	190.2 Os Osmium 76	192.2 r r Iridium	195.1 Pt Platinum 78	197.0 Au Gold 79	200.6 Hg Mercury 80		207.2 Pb Lead Lead	209.0 Bi Bismuth 83	210.0 Po Polonium 84	210.0 At Astatine 85	222.0 Rn Radon 86
223.0	226.0 Ra Radium 88	227 Ac Actinium 89 †															
thealthanides ada ada ada ada ada ada ada ada ada ad	Lantha	nides		_	140.9 Pr Praseodymium 1	Neodymium 60 (144.9 Pm Promethium 631 (150.4 Sm Samarium 62	152.0 Eu Europium (63	157.3 Gd Gadolinium 64	158.9 Tb Terbium	162.5 164.9 Dy Ho Dysprosium Holmium 66 67	164.9 Ho Holmium 67	167.3 Er bit 58	168.9 Tm Thulium 69	173.0 Yb Ytterbium 70	. Tm Yterbium Lutetium 69 70 70 70 70 70 70 70 70 70 70 70 70 70
rs.eom	3 Actini	səp		Th Thorium 90	Protactinium 91	.236.0 U Uranium 92	Np	Pu Pu Plutonium 94	Americium	Curium 96	Bk Bk Berkelium	247.1 252.1 (252) (252	Einsteinium 99	(257) Fermi 100	Md Mendelevium 101	Nobelium	Lawrencium

Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH ₃	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
RCOOCH ₃	3.7–4.1
ROH	0.5-5.0

Table 2 Infra-red absorption data

Bond	Wavenumber/cm ⁻¹
С—Н	2850–3300
С—С	750–1100
C=C	1620–1680
C=O	1680–1750
С—О	1000-1300
O—H (alcohols)	3230–3550
O—H (acids)	2500–3000

12

Γhe 1	table below shows the relative	ve abunda	nce of eac	ch isotope	in a samp	le of platin
	m/z	194	195	196	198]
,	Relative abundance (%)	32.8	30.6	25.4	11.2	
	the data in the table to calcu		lative ator	mic mass (of this sam	nple of
olatii		late the re	elative ator	mic mass o	of this sam	nple of
olatii	the data in the table to calcu	late the re	elative ator	mic mass	of this sam	nple of

Turn over for the next question

2 (a) An acid, H₂X, reacts with sodium hydroxide as shown in the equation below.

$$H_2X(aq) + 2NaOH(aq) \longrightarrow 2Na^+(aq) + X^{2-}(aq) + 2H_2O(1)$$

A solution of this acid was prepared by dissolving $1.92\,g$ of H_2X in water and making the volume up to $250\,\text{cm}^3$ in a volumetric flask.

A $25.0\,\mathrm{cm}^3$ sample of this solution required $21.70\,\mathrm{cm}^3$ of $0.150\,\mathrm{mol\,dm}^{-3}$ aqueous NaOH for complete reaction.

	(i)	Calculate the number of moles of NaOH in 21.70 cm ³ of 0.150 mol dm ⁻ NaOH	⁻³ aqueous
	(ii)	Calculate the number of moles of H_2X which reacted with this amount Hence, deduce the number of moles of H_2X in the 1.92 g sample.	of NaOH
		Moles of H_2X in 25.0 cm ³ of solution	
		Moles of H_2X in 1.92 g sample	
	(:::)		
	(iii)	Calculate the relative molecular mass, $M_{\rm r}$, of ${\rm H_2X}$	
			(5 marks)
(b)		lysis of a compound \mathbf{Y} showed that it contained 49.31% of carbon, 6.85 rogen and 43.84% of oxygen by mass. The $M_{\rm r}$ of \mathbf{Y} is 146.0	% of
	(i)	State what is meant by the term empirical formula.	

	(11)	Use the above data to calculate the empirical formula and the molecular formula of \mathbf{Y} .
		Empirical formula of Y
		Molecular formula of Y
		(4 marks)
(c)	Sodi	um hydrogencarbonate decomposes on heating as shown in the equation below.
		$2\text{NaHCO}_3(s) \longrightarrow \text{Na}_2\text{CO}_3(s) + \text{CO}_2(g) + \text{H}_2\text{O}(g)$
		mple of NaHCO ₃ was heated until completely decomposed. The CO ₂ formed in eaction occupied a volume of 352cm^3 at $1.00 \times 10^5 \text{Pa}$ and 298K .
	(i)	State the ideal gas equation and use it to calculate the number of moles of CO_2 formed in this decomposition. (The gas constant $R = 8.31 \mathrm{J K^{-1} mol^{-1}}$)
		Ideal gas equation
		Moles of CO ₂
	(ii)	Use your answer from part (c)(i) to calculate the mass of the NaHCO ₃ that has decomposed.
		(If you have been unable to calculate the number of moles of CO_2 in part (c)(i), you should assume this to be 0.0230 mol. This is not the correct value.)
		(7 marks)

3

(a)	(i)	State what is meant by the term <i>polar</i> when applied to a covalent bond.
	(ii)	Consider the covalent bonds in molecules of hydrogen and of water. State whether the covalent bonds are polar or non-polar. Explain your answers.
		Bonds in hydrogen
		Bonds in water
		Explanation
		(4 marks)
(b)	Amr	monia is very soluble in water because it is able to form hydrogen bonds with

- water molecules.
 - Complete the diagram below to show how an ammonia molecule forms a hydrogen bond with a water molecule. Include partial charges and all the lone pairs of electrons.

The bond angle in a molecule of water is about 104.5°. State the bond angle in an ammonia molecule and explain why it is different from that in water.

Bond angle in ammonia
Explanation

(c) Ammonia reacts with aluminium chloride to form the molecule shown below.

Name the type of bond formed between the nitrogen and aluminium atoms. Explain how this bond is formed.

Type of bond	
Explanation	
	(2 marks)

Turn over for the next question

4	(a)	Give	the formula of the least soluble hydroxide of the Group II elements Mg to Ba.		
		•••••	(1 mark)		
((b)	An aqueous solution of sodium chloride may be distinguished from an aqueous solution of sodium sulphate using a simple chemical test.			
		(i)	Identify a reagent for this test.		
		(ii)	State the observations you would expect to make if the reagent identified in part (b)(i) is added to a separate sample of each solution. Write an equation for any reaction which occurs.		
			Observation with sodium chloride		
			Equation		
			(4 marks)		

SECTION B

Answer both questions in the spaces provided.

5	sodiu	y a diagram to show how the ions are arranged in three dimensions in a crystal of am chloride. Explain, in terms of bonding, why sodium chloride has a high melting at. State and explain a condition needed for sodium chloride to conduct electricity. (6 material)	rks)					
6	(a)	State and explain the trend in atomic radius of the elements Na to Cl in Period 3. (4 max)	rks)					
	(b)	State the meaning of the term <i>first ionisation energy</i> of an atom. State the general trend in the first ionisation energy of the Period 3 elements Na to A Identify and explain one deviation from this general trend.						
		(5 mar	rKS)					
	END OF QUESTIONS							
•••••	•••••		· • • • • •					
•••••	•••••		· • • • •					
•••••	•••••		, 					
•••••	•••••		· • • • • •					
•••••			•••••					
	•••••							
			•••••					
			•••••					
•••••			•••••					
	•••••							
	•••••							
•••••	•••••	www.theallpapers.co	om					
