Surname				Other	Names			
Centre Number					Candida	ate Number		
Candidate Signature								

Leave blank

CHM1

General Certificate of Education January 2006 Advanced Subsidiary Examination

CHEMISTRY
Unit 1 Atomic Structure, Bonding and Periodicity

Wednesday 11 January 2006 9.00 am to 10.00 am

For this paper you must have

• a calculator

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Answer the questions in **Section A** and **Section B** in the spaces provided.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.
- The Periodic Table/Data Sheet is provided on pages 3 and 4. Detach this perforated sheet at the start of the examination.

Information

- The maximum mark for this paper is 60.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.
- The following data may be required. Gas constant $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$
- Your answers to the question in **Section B** should be written in continuous prose, where appropriate.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.

Advice

• You are advised to spend about 45 minutes on **Section A** and about 15 minutes on **Section B**.

For Examiner's Use							
Number	Mark	Number	Mark				
1							
2							
3							
4							
5							
6							
Total (Co	olumn 1)	→					
Total (Column 2) →							
TOTAL							
Examine	r's Initials						

SECTION A

Answer all questions in the spaces provided.

1 /	(0)	Commista	+la a	fall arring	to 1 1 0
1 ((a)	Complete	une	IOHOWING	table.

	Relative mass	Relative charge
Neutron		
Electron		

(2 marks)

(b) An atom has twice as many protons as, and four more neutrons than, an atom of ⁹Be. Deduce the symbol, including the mass number, of this atom.

(2 marks)

Draw the shape of a molecule of BeCl₂ and the shape of a molecule of Cl₂O. Show any lone pairs of electrons on the central atom. Name the shape of each molecule.

 $BeCl_2$

 Cl_2O

The equation for the reaction between magnesium hydroxide and hydrochloric acid is shown below.

$$Mg(OH)_2(s) + 2HCl(aq) \longrightarrow MgCl_2(aq) + 2H_2O(l)$$

Calculate the volume, in cm³, of 1.00 mol dm⁻³ hydrochloric acid required to react completely with 1.00 g of magnesium hydroxide.

(4 marks)

The Periodic Table of the Elements

The atomic numbers and approximate relative atomic masses shown in the table are for use in the examination unless stated otherwise in an individual question.

									_				
0	4.0 He Helium 2	20.2 Ne	10	39.9 Ar	Argon 18	83.8 ⊼	Krypto 36	131.3 Xe	Xenor 54	222.0 Rn	Rador 86		
=		0.0 T		္ဌ	Chlorine	ි. ම	sromine	6.9 -	lodine	0:0 At	statine		
5		16.0 Oxvqen	8	32.1 S	Sulphur 16	79.0 Se	Selenium 34	127.6 Te	Tellurium 52	210.0 Po	Polonium 84		
>		10.8 12.0 14.0 16.0 19 B C N O Boron Carbon Nitronen Oxygen F	7	31.0 P	Phosphorus 15	74.9 As	Arsenic 33	121.8 Sb	Antimony 51	209.0 Bi	Bismuth 83		
≥		12.0 Carbon	9	28.1 Si	Silicon 14	72.6 Ge	Germanium 32	118.7 Sn	Tin 50	207.2 Pb	Lead 82		
=		10.8 B	5	27.0 AI	Aluminium 13	69.7 Ga	Gallium 31	114.8 In	Indium 49	204.4 TI	Thallium 81		
						65.4 Zn	Zinc 30	112.4 Cd	Cadmium 48	200.6 Hg	Mercury 80		
						63.5 Cu	Copper 29	107.9 Ag	Silver 47				
						58.7 N i	Nickel 28	106.4 Pd	Palladium 46	195.1 Pt	Platinum 78		
						58.9 Co	Cobalt 27	102.9 Rh	Rhodium 45	192.2 Ir	Iridium 77		
						55.8 Fe	Iron 26	101.1 Ru	Ruthenium 44	190.2 Os	Osmium 76		
		6.9 Li	3			54.9 Mn	Manganese Iron Cobalt 25 27	98.9 Tc	Technetium 43	186.2 Re	Rhenium 75		
		48S				52.0 Cr	Chromiur 24	95.9 Mo	Molybdenu 42	183.9 W	Tungsten 74		
		relative atomic mass -	umber —			50.9 V	Vanadium 23	92.9 Nb	Niobium 41	180.9 Ta	Tantalum 73		
	Key	relative a	atomic number			47.9 Ti	Titanium 22	91.2 Zr	Zirconium 40	178.5 Hf	Hafnium 72		
						45.0 Sc	Scandium 21	8 8.9	Yttrium 39	138.9 La	ید∋	227 Ac	Actinium 89 †
=		9.0 Be	4	24.3 Mg	Ε .	40.1 Ca	Calcium 20	87.6 Sr	_	137.3 Ba		226.0 Ra	Radium 88
-	1.0 H Hydrogen	6.9 Li			Sodium N	39.1 K		85.5 R		132.9 Cs	Caesium 55	223.0 2 Fr	Francium 87

175.0 Lu Lutetium 71	(260) Lr Lawrendium 103
173.0 Yb Ytterbium 70	(259)
168.9 Tm Thulium 69	. ≻ .
167.3 Er Erbium 68	257) Fm Fermium 00
164.9 Ho Holmium 67	(252) Es Einsteinium 99
158.9 162.5 164.9 1	252.1 Cf Californium 98
158.9 Tb Terbium 65	247.1 Bk Berkelium 97
157.3 Gd Gadolinium 64	247.1 Cm Curium 96
152.0 Eu Europium 63	239.1 243.1 Pu Am Plutonium Americium 94 95
5m Samarium 62	239.1 Pu Plutonium 94
Pm Promethium 61	237.0 Np Neptunium 93
140.9	238.0 U Uranium 92
, H 4)	231.0 238.0 Da U Protactinium Uranium 91
140.1 Ce Cerium 58	232.0 Th Thorium 90

* 58 - 71 Lanthanides

† 90 – 103 Actinides

Table 1 Proton n.m.r chemical shift data

Type of proton	δ/ppm
RCH_3	0.7–1.2
R_2CH_2	1.2–1.4
R_3 CH	1.4–1.6
$RCOCH_3$	2.1–2.6
$ROCH_3$	3.1–3.9
$RCOOCH_3$	3.7–4.1
ROH	0.5–5.0

Table 2 Infra-red absorption data

Wavenumber/cm ⁻¹
2850-3300
750–1100
1620–1680
1680–1750
1000-1300
3230–3550
2500–3000

2		tassium nitrate, KNO ₃ , decomposes on strong heating, forming oxygen and solid Y as the ly products.							
	(a)	A 1.0	00 g sample of KNO ₃ ($M_{\rm r}$ = 101.1) was heated strongly until fully decomposed Y .						
		(i)	Calculate the number of moles of KNO ₃ in the 1.00 g sample.						
		(ii)	At 298 K and 100 kPa, the oxygen gas produced in this decomposition occupied a volume of 1.22×10^{-4} m ³ . State the ideal gas equation and use it to calculate the number of moles of oxygen produced in this decomposition. (The gas constant $R = 8.31 \mathrm{JK^{-1}mol^{-1}}$)						
			Ideal gas equation						
			Moles of oxygen						
			(5 marks)						
	(b)		pound Y contains 45.9% of potassium and 16.5% of nitrogen by mass, the inder being oxygen.						
		(i)	State what is meant by the term <i>empirical formula</i> .						
		(ii)	Use the data above to calculate the empirical formula of Y .						
			(4 marks)						
	(c)	Dedu	ace an equation for the decomposition of KNO ₃ into Y and oxygen.						

(1 mark)

10

3 The table below shows the electronegativity values of some elements.

	Fluorine	Chlorine	Bromine	Iodine	Carbon	Hydrogen
Electronegativity	4.0	3.0	2.8	2.5	2.5	2.1

(a)	Define the term <i>electronegativity</i> .
	(2 marks)

(b) The table below shows the boiling points of fluorine, fluoromethane (CH₃F) and hydrogen fluoride.

	F—F	F C H / H H	Н—Г
Boiling point/K	85	194	293

(1	.)	N	lame	the	strongest	type	of	intermo	lecul	lar	force	present	in
----	----	---	------	-----	-----------	------	----	---------	-------	-----	-------	---------	----

Liquid F₂

Liquid CH₃F

Liquid HF

(ii) Explain how the strongest type of intermolecular force in liquid HF arises.

•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••

(6 marks)

APW/Jan06/CHM1

(c)	The table below	shows the boiling	points of some	other hydrogen	halides.
\ /		\mathcal{L}	1	, ,	

	HC1	HBr	НІ
Boiling point/K	188	206	238

(i)	Explain the trend in the boiling points of the hydrogen halides from HCl to HI.
(ii)	Give one reason why the boiling point of HF is higher than that of all the other hydrogen halides.
	(3 marks)

Turn over for the next question

11

1	(a)	State the meaning of the term first ionisation energy of an atom.
		(2 marks)
	(b)	Complete the electron arrangement for the Mg ²⁺ ion.
		$1s^2$ (1 mark)
	(c)	Identify the block in the Periodic Table to which magnesium belongs.
		(1 mark)
	(d)	Write an equation to illustrate the process occurring when the second ionisation energy of magnesium is measured.
		(1 mark)
	(e)	The Ne atom and the Mg^{2+} ion have the same number of electrons. Give two reasons why the first ionisation energy of neon is lower than the third ionisation energy of magnesium.
		Reason 1
		Reason 2
		(2 marks)

12

There	is a general trend in the first ionisation energies of the Period 3 elements, Na–Ar
(i)	State and explain this general trend.
	Trend
-	Explanation
` /	Explain why the first ionisation energy of sulphur is lower than would be predicted from the general trend.
	(5 marks)

Turn over for the next question

Turn over

SECTION B

Answer both questions in the space provided on pages 10–12 of this booklet.

A sample of element \mathbf{Q} was extracted from a meteorite. The table below shows the relative abundance of each isotope in a mass spectrum of this sample of \mathbf{Q} .

m/z	64	66	67	68
Relative abundance (%)	38.9	27.8	14.7	18.6

(a) Define the term *relative atomic mass* of an element.

(2 marks)

- (b) Use the data above to calculate the relative atomic mass of this sample of \mathbf{Q} . Give your answer to one decimal place. Suggest the identity of \mathbf{Q} . (3 marks)
- (c) In order to obtain a mass spectrum of **Q**, a gaseous sample is first ionised. Describe how ionisation is achieved in a mass spectrometer. Give **three** reasons why ionisation is necessary. (5 marks)
- 6 Phosphorus exists in several different forms, two of which are white phosphorus and red phosphorus. White phosphorus consists of P₄ molecules, and melts at 44 °C. Red phosphorus is macromolecular, and has a melting point above 550 °C.

Explain what is meant by the term *macromolecular*. By considering the structure and bonding present in these two forms of phosphorus, explain why their melting points are so different.

(5 marks)

END OF QUESTIONS

11

•••••••••••••••••••••••••••••••••••••••

Copyright $\ensuremath{\mathbb{C}}$ 2006 AQA and its licensors. All rights reserved.