

QUALIFICATIONS
ALLIANCE

General Certificate of Education

Chemistry 5421

CHM1 Atomic Structure, Bonding and Periodicity

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

CHM1

Question 1

(a) Decreasing
[If wrong trend = 0] [If trend missing mark on]
Increase in protons / nuclear charge / nucleus more +ve
[Not increased atomic number]

Similar/same shielding / shells

Or increased attraction between nucleus and (outer) e- [tied to increase in number of protons]
[Not similar orbitals/sub-shells]
(b) (i) $\mathrm{Mg}(\mathrm{g}) \quad \rightarrow \mathrm{Mg}^{+}(\mathrm{g})+\mathrm{e}^{-} \quad$ [state symbols required]
$\mathrm{Mg}(\mathrm{g})+\mathrm{e}^{-} \rightarrow \mathrm{Mg}^{+}(\mathrm{g})+2 \mathrm{e}^{-}$
$\mathrm{Mg}(\mathrm{g})-\mathrm{e}^{-} \rightarrow \mathrm{Mg}^{+}(\mathrm{g})$
(ii) e- removed from a shell of lower energy/smaller size
or e^{-}closer to nucleus
or harder to remove an e^{-}from +2 ion than from +1 ion / more highly charged ion
Less shielding / clear description of difference in shielding
[Accept converse arguments]
[Not just unexplained identification of orbitals involved]
[Not just 'increased attraction']
[Not increased nuclear charge]
(iii) Decreasing
[If wrong trend $=0$] [If trend missing mark on]
e^{-}further from nucleus / increased atomic radius / bigger atoms
[Not references to ionic radius / bonding e-]
[Not higher energy levels /electronic energy levels further from nucleus]
More shells / shielding / energy levels [Not more sub-shells]
or decreased attraction between nucleus and outer e^{-}(tied to e^{-}further from nucleus)

Accept 'e" to be removed /valance e^{-}as alternative to 'outer $\left.e^{-‘}\right]$
[Accept converse arguments]
[NOT references to charge/size ratio / charge density / delocalised e־/bonding e־]
(c) $\mathrm{Mg} \quad$ Steam/high temperature/gaseous water
[Not heat / hot water]
$\mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{MgO}+\mathrm{H}_{2}$
Ca Cold/water / RT
[Not hot/warm water/'none'/standard conditions/just 'liquid']
$\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}$
[Don't transfer condition mark to M1/M3, from state symbol in equation]
[Ignore state symbols - even if wrong - for equation marks]
[Treat incorrect state symbols as contradictions of correct conditions]

Question 2

(a)

	$\begin{equation*} \underline{\underline{C}} \tag{1} \end{equation*}$	$\begin{gathered} \underline{\mathrm{O}} \\ \underline{41.03} \end{gathered}$	$\begin{gathered} \underline{\mathrm{N}} \\ \underline{35.90} \end{gathered}$	7.69
	12	16	14	1
[Incorrect A_{r} used $\left.=0\right]$				
	1.28	2.56	2.56	7.69
and	1	2	2	6

So, $\mathrm{CH}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}$
(b) (i) M_{r} of ammonium carbamate $=78.0$

Moles ammonium carbamate $=\frac{7.50}{78.0}=\begin{aligned} & 9.62 \times 10^{-2} \\ & {\left[\text { range }=9.6-9.62 \times 10^{-2}\right]}\end{aligned}$
[Mark consequentially on their M_{t}]
Moles gas $=3 \times 9.62 \times 10^{-2}=0.288$
[range $=0.288-0.29]$
[Mark consequentially on their moles of ammonium carbamate]
(ii) $\mathrm{pV}=\mathrm{nRT}$
[In lieu of this, accept correctly rearranged version of expression]
$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{0.288 \times 8.31 \times 473}{98.7 \times 10^{3}} \quad \begin{gathered}\text { (populating expression) } \\ \text { (pressure conversion) }\end{gathered}$
[If expression wrongly rearranged or if n/R etc. missing, lose M2/M4]
$=1.15 \times 10^{-2} \mathrm{~m}^{3} \quad\left[\right.$ range $\left.=1.1-1.2 \times 10^{-2} \mathrm{~m}^{3}\right]$
[Using 0.253 gives $1.0-1.01 \times 10^{-2} \mathrm{~m}^{3}$]
[If ' n ' $\neq 0.253$ or their moles of gas lose M2 but mark consequentially for M4]
[If no pressure conversion and correct answer in dm^{3}, allow M3/M4]
[If no pressure conversion and consequentially answer in m^{3}, allow M4]
[Check that moles shown in equation = moles used in calculation]

Question 3

(a) $3 \mathrm{~N}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{HNO}_{3}+2 \mathrm{NO}$
(b) (i) Moles $\mathrm{HNO}_{3}=150 \times 10^{-3} \times 1.65$

$$
\begin{equation*}
=0.2475 / 0.248 \quad[\text { range }=0.247-0.25] \tag{1}
\end{equation*}
$$

(ii) Moles $\mathrm{Cu}=3 / 8 \times 0.2475$ [if mole ratio wrong, lose $\mathrm{M} 3 / 4$
$=0.0928 \quad$ [range $=0.0926-0.094]$
[consequentially on their moles]
Mass $\mathrm{Cu} \quad=0.0928 \times 63.5$

$$
=5.89-5.91 \mathrm{~g}
$$

$$
\text { [range }=5.88-6.0]
$$

[consequentially on their moles]
[Using 0.172 gives: \quad Moles $\mathrm{Cu}=0.0645-0.065$

Question 4

(a) QoL Covalent bond Two atoms share a pair of/2 $\mathrm{e}^{-} /$shared pair/2 of e^{-} [Not donated] [Not just one e- from each atom; must have idea of shared pair(s)]

Polar bond; a covalent bond in which the e^{-}distribution is not symmetrical / a bond with unequal/unfair sharing of e- /
bond with δ^{+}and δ^{-}on the ends /
bonding e-s spend more time near one end of bond
[Allow e- pair closer to one atom]
[Not just a diagram] [Not distorted e־/cloud]
(b) (i) Difference in electronegativity /

F more electronegative that H / F is very electronegative /
clear description of electronegativity difference in terms of bonding e[Not diagram]
Bonding e's drawn towards F
[Not bonding e's spend more time near one end of bond]
(ii) $\quad \mathrm{NH}_{3} \quad$ [if wrong compound score 0 for (b)(iii)]

$$
\quad \text { Mass } \mathrm{Cu}=4.09-4.13 \mathrm{~g}]
$$

(iii) N has smallest electronegativity of N, O and $\mathrm{F} /$
NH_{3} has smallest electronegativity difference [Not 'more bonds']
(c) (i) Hydrogen bonding / H bonding
[If only $1 \mathrm{NH}_{3}$ molecule shown = 0]

$$
\begin{aligned}
& 1 \text { pair of charges shown on both molecules } \\
& \text { lone pair on both molecules } \\
& \text { hydrogen bond between lone pair and H atom }
\end{aligned}
$$

[Allow dimeric structure]
[H-bonded N-H-N does NOT need to be linear]
[if full structure of NH_{3} molecules not shown, treat as a contradiction; lose $1^{\text {st }}$ mark earned]
(d) (i) Dative/coordinate [ignore 'covalent' but ionic/hydrogen etc, = 0]

Both bonding e- come from the same atom
Correct direction of electron pair donation (i.e. from $\mathrm{N} / \mathrm{NH}_{3}$)
[So, 'both e- come from NH_{3} to form bond' scores 2]
(ii)

[Not H-N-H linear]

[penalise missing 'H' once]
(iv) $109 \% / 109.5^{\circ}$

Question 5

(a) Both have 7 protons
${ }^{14} \mathrm{~N}$ has 7 n and ${ }^{15} \mathrm{~N}$ has 8 n
[allow 1 mark for traditional 'same protons; different neutrons $\mu^{15} \mathrm{~N}$ has an extra neutron style of answer]

Chemical properties identical [Not similar]
as chemistry determined by electrons / electron arrangement /
they have same electron arrangement / number of electrons / same e-
[Not just 'same p and e^{-4} - there needs to be a focus on the number of e-]
(b) 'p' block

QoL Highest energy/outermost electron(s)/last e- in p sub-shell/orbital/ level/sub-level
[Answer must be in words] [Not ' p shell']
$1 s^{2} 2 s^{2} 2 p^{6} \quad$ [accept upper case letters \& subscripted numbers] [Not [He] 2p ${ }^{6}$]

Question 6

(a) Ionisation
By an electron gun/clear description of electron gun - tied to 'ionisation' [Ignore descriptions of the ionisation process]
[Not ionisation chamber]
Deflection
By a magnetic field / electromagnet/magnetic plate - tied to 'deflection’
[Not negative plate etc.]
Ignore 'vaporisation' explanations]
(b) $(188 \times 1.5)+(189 \times 2.5)+(190 \times 3.0)+(192 \times 4.5)$
11.5
[If not divided by 11.5 (or thereabouts) then:
if an arithmetic error; allow consequentially on M3
if 'silly value' e.g. 100 or $759=0$ for M3]
$=190.3$ [Allow consequentially to an arithmetic error or 'almost' 11.5 totals]
Z = Os [accept whenever seen]
[Consequentially on M_{r} but must be a metal]

