

> OUALIFICATIONS

ALLIANCE

General Certificate of Education

Chemistry 5421

CHM1 Atomic Structure, Bonding, and Periodicity

Mark Scheme

2007 Examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT
AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Question 1

(a)
(b)

	relative mass
Proton	1
Electron	$1 / 1800$
Accept $<5.6 \times 10^{-4} /$ negligible $/ 0$	

${ }^{38} \mathrm{Ar}$ mass number [allow separate 38] element
and relative charge
$+\frac{+1}{-1}$

1
1

Accept $<5.6 \times 10^{-4} /$ negligible $/ 0$
[Not AR] [M1: Not 38.0/M2 Not symbol with a charge] [Wrong proton number = 'con' for M2] [38 A_{r} scores 1 mark]
(c) (i) $1 s^{2} 2 s^{2} 2 p^{6}$
[Allow upper case letters and subscripted numbers] [Not [He]2s $\left.{ }^{2} 2 p^{6}\right]$
(ii) More protons / atomic number / proton number /higher or stronger nuclear charge
Al^{3+} smaller (size) than $\mathrm{Na}^{+} / \mathrm{e}^{-}$closer to nucleus
More attraction for e^{-}from / e^{-}held/pulled more strongly by Al^{3+}
any 2 points 2
[M3 A A^{3+} may be inferred] [M2 Not 'atomic radius'/ 'atom'/
'molecule' = 'con']
Greater charge density/charge-size ratio = alternative for either M1 or M2 but not for both]
(d) (i) High energy/speed electrons / electrons from an electron gun / electron

Knock off/displaces/removes an electron/electrons (from the gaseous 1 atom)
[Accept correct equation for M2]
(ii) Electric field / -ve plate / electrostatic field/oppositely charged plates
[Not electronic field; magnetic field / electric current/high pd/high voltage]
(e)
$\frac{(194 \times 32.8)+(195 \times 30.6)+(196 \times 25.4)+(198 \times 11.2)}{100}$
$=195.3$ (1 d.p. only)
[Mark M2 conseq. on transcription error]

Question 2

(a) (i) $21.7 \times 10^{-3} \times 0.150=3.255 \times 10^{-3}(\mathrm{~mol})$
[Accept $3.25-3.26 \times 10^{-3}$]
(ii) $\operatorname{In~} 25 \mathrm{~cm}^{3}=\left(3.255 \times 10^{-3}\right) / 2=1.63 \times 10^{-3}(\mathrm{~mol}) \quad$ [Conseq on (i)] 1

In sample $=1.63 \times 10^{-2} \quad$ [Conseq on (ii)]

```
(iii) = 1.92/1.63 × 10-2 [Process mark]
= 117.9 = 118 [Conseq on (ii)] [M5 Tied to M4]
[Accept 117.7-118.2]
[If ‘ \(\div\) 2’ not done in M2, CE \(=0\) for M2 and M5]
[If \(1.63 \times 10^{-3}\) used in (a)(iii), lose M3 only]
```

(b) (i) Simplest/lowest ratio of atoms of each element (in a compound)

QoL [Allow 'elements' for 'each element] ['atoms' needed in molar definitions]
[Not atoms of an element]
(ii)

\mathbf{C}	\mathbf{H}	\mathbf{O}
$\frac{49.31}{12}$	6.85	43.84
4.11	1	16
1.5	2.85	2.74
	2.5	1

Ratio $3 \quad 5$
2
or $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$
[If any A_{r} value used is wrong / calculation inverted $\left.=C E=0\right]$
$=\quad \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \times 146 / 73=\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{4}$
[If transcription error in \% data, allow M1 only]
[$\mathrm{Not}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{2}$]
(c) (i) $\mathrm{pV}=\mathrm{nRT}$
$=\frac{\mathrm{pV}}{\mathrm{RT}}=\frac{100000 \times 352 \times 10^{-6}}{8.31 \times 298} \quad \begin{array}{ll}\text { [volume conversion] } \\ \text { [numbers correct] }\end{array} \quad \begin{aligned} & 1 \\ & 1\end{aligned}$
Moles $\mathrm{CO}_{2}=0.0142(\mathrm{~mol})$
[If transcription error, lose M3 - so, '325’ loses M2 (no conversion) and M3 (transcription error)]
[If expression inverted (i.e. RT/pV calculated) $=C E=0$ for M3 and M4]
Moles $\mathrm{NaHCO}_{3}=0.0142 \times 2(=0.0284(\mathrm{~mol}))$ [Process]
Mass $\mathrm{NaHCO}_{3}=84 \times 0.0284 \quad\left[\right.$ mark for the $\left.M_{r}\right]$ [accept correct 1 'string']
$=2.38-2.39 \mathrm{~g} \quad$ [Conseq on M_{r} error]
[lf ' $\times 2$ ' not used - i.e. $M 5=0$, then $C E$ and $M 7$ is also lost. Can get $M 6$ for M_{r}]
Answers using 0.0230 mol :
Moles $\mathrm{NaHCO}_{3}=0.0460$ Mass $=3.86-3.87$
[Sig figs for whole question. For <3 sf (unless 2sf dead) award 1 mark penalty ONLY for sf errors]

Question 3

(a) (i) (A covalent bond in which) the electron density is/electrons are unequally shared.
[Allow idea of $\delta+$ and δ - across bond / charge separation / bonding pair/e-s closer to one atom] [accept clear diagram] [Not electron cloud unless clearly describing a covalent bond]
(ii) Bonds in hydrogen non-polar Bonds in water polar [need both]
[If bond types reversed, lose M1, not CE]
Atoms in a non-polar bond / in H_{2} have the same electronegativity 1
Atoms in a polar bond have different electronegativities $\mathbf{O r}$
O more/very electronegative / has different electronegativity than H
[Allow M1 in 'Explanation' section if gaps in bond type section] [If 'gaps' and bond types not identified in explanation, allow 1 mark for H_{2} has no electronegativity diff. but H and O have electronegativity diff.]
[If M1 = wrong, e.g. van der Waals' etc, then $C E=0]$
(b) (i)

At least one dipole on each molecule

Lone pair on N and H -Bond correctly indicated [Not arrows or solid lines] Two lone pairs on oxygen 1
[An extra, incorrect, hydrogen bond contradicts a correct one]
(ii) Bond angle in ammonia $=106.5^{\circ}-107.5^{\circ} \quad 1$

Idea that lone pair repulsion > bonding pair repulsion1

Oxygen/water has more lone pairs than nitrogen/ammonia 1
Mark points independently
(c) Type of bond = Dative bond / coordinate bond 1

Lone pair donated from/by N (to AI) / N provides both electrons 1
[Accept NH_{3} in place of N]

Question 4

(a) Least soluble hydroxide $=\mathrm{Mg}(\mathrm{OH})_{2} \quad 1$
(b) (i) $\quad \mathrm{BaCl}_{2} /$ any soluble barium $\underline{\mathrm{cpd}}$ Or $\mathrm{AgNO}_{3} /$ any soluble silver $\underline{\mathrm{cpd}} \quad 1$ [If formula used, must be correct] [Not Ba^{2+} ions / Ba element] [If 'impossible' reagent, e.g. BaSO_{4} or $\mathrm{NaOH},=\mathrm{CE}=0$]
(ii) Obs with $\mathrm{NaCl}=$ no change/ppt/reaction Or white ppt etc*. 1 Obs with $\mathrm{Na}_{2} \mathrm{SO}_{4}=$ white $\mathrm{ppt}^{*} /$ solid \quad Or no change etc. 1 Equation $=\mathrm{Ba}^{2+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{BaSO}_{4} \quad \mathrm{Or} \quad \mathrm{Ag}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{AgCl} 1$ [If $\mathrm{Ba} / \mathrm{Ba}^{2+} /$ wrong formula - i.e. M1 lost but not 'impossible' reagent, allow M2/3/4]
[Allow full credit for a valid test for Clions - the points below apply] [If no reagent given but $\mathrm{Ba}^{2+} / \mathrm{BaCl}_{2}$ in equation, allow credit for $\mathrm{M} 2 / 3 / 4$]
[lgnore state symbols in the equation - even if wrong]
[*ppt or solid or powder or suspension]
[Not cloudy, milky, emulsion, residue, opaque]
[Not nothing / no observations / none]

Question 5

Diagram: $\quad \mathrm{Na}^{+}$and Cl^{-}ions correctly placed in 2D (Min 4 ions) 1
Cubic - min 8 ions (or 7 with hidden ion) 1
[Looking for shape, so ignore missing charges][Accept circles with '+’ and '-‘/ different size circles / differentcoloured circles]
Opposite-ion/electrostatic attractions / forces [Not electrostatic bonds] 1
are strong / difficult to break / overcome / loosen 1
[Accept 'strong ionic bonding' for 1 mark][Accept high energy needed to overcome attractions in place of 'strong'][Not just high energy needed to melt NaCl][atoms / molecules / IMFs / covalent / delocalised e- = CE=0]
Conducts only when molten or in aqueous solution 1
As ions can move. 1
[Mark M5 / M6 separately

Question 6

(a) Atomic radius decreases 1[If trend wrong $=C E=0$] [If trend blank award $\mathrm{M} 2 \mathrm{M} 3 / \mathrm{M} 4$ on merit]
Increase in number of protons / atomic number / nuclear charge 1
Same shells / energy level / shielding / screening
[Accept similar shielding] 1
QoL Increase in attraction/pull between nucleus and outer electrons 1
(b) Energy/enthalpy change when one electron is removed 1
from a gaseous atom 1[Molar definitions must have reference to 'atoms']
General trend = increasing 1
[Do NOT treat wrong trend as CE but comparisons with Mg / P must be emphatic - i.e. IE of A I is much lower than that of Mg]
Deviation:
first IE of AI is low / < Mg M4 first IE of S is low $/<\underline{P}$ 1
(Outer) e^{-}(singular) in 3p/p orbital M5 (e- removed from) e^{-}pair in $3 p$ / 1 / p sublevelIn higher energy orbital/sub-levelM6 repulsion between these paired e^{-}Or e^{-}further from nucleus['e" pair' may be inferred]1
Mark part (b) to 5 max
[If both AI and S described, mark both and award higher mark - cross out rejected answer]
[If not AI / S then CE for M4/5/6]

