

Mark scheme June 2003

GCE

Biology B

Unit BYB2

Copyright © 2003 AQA and its licensors. All rights reserved.

(a) prophase – coil up/spiralise/condense;
(allow shorter/contract/become visible)
metaphase – move to equator or centre of cell / attach to spindle;
(reject if reference to pairing)
anaphase – chromatids separate/centromeres divide;
(reject chromosomes move to poles without further explanation)
telophase – uncoil; (allow lengthen/becomes less visible)
(allow labelled diagrams)

4

(b)

Mitosis	Meiosis		
chromosome number remains same /	chromosome number halved /		
cells produced diploid	cells produced haploid		
cells produced identical /	cells produced not identical /		
no variation in cells produced	variation in cells produced		
only one division/2 cells produced	two divisions / 4 cells produced		
somatic/ body cell formation/	used in gamete formation /		
used in AR/growth	reproductive cell formation /		
	occurs in gonads/named gonad		
	(reject occurs in gametes)		

Accept

no pairing of chromosomes	pairing of chromosomes
no chiasma/crossing over	chiasma/crossing over (may occur)

2 max

Total 6

(a) one <u>strand</u> of original molecule in each new molecule/DNA;

(b) (i) each base only pairs with one other/one specific base / complementary base pairing;
 example – pairing of adenine and thymine/cytosine and guanine/ purine and pyrimidine;

(ii) identical/exact copies made;
 same base sequence as original DNA;
 both strands act as template/complementary base pairing occurs on both strands;

3 (max 2 for (ii))

(c) two strands with specific base pairing;
large number of hydrogen bonds (between strands);
helix/coiling reduces chance of molecular damage / protects H bonds;
strong sugar-phosphate backbone;
(reject strong bonds between nucleotides)

2 max

Total 6

Question 3

(a) DNA/chromosomes/genetic information <u>in nucleus;</u> divides by mitosis; (reject asexual reproduction)

2

(b) body cell has full number of chromosomes/diploid; gamete has only half number of chromosomes/haploid; require complete genome to form new individual;

1 max

(c) (i) desired characteristic/qualities kept / exact/known features produced; produces more of an endangered species; (ignore genetically identical)

1 max

(ii) possible development of side effects / early death / named side effect; high cost due to low chance of success/technology required; no possibility of adaptation; consequence of lack of variation (e.g. all susceptible to same disease); long term effect not known; (ignore ethical issues / genetic diseases)

1 max

Total 5

change	e in base/nucleotide;		1
differe with d (reject change	ent tRNA molecules pair with mRNA; ifferent amino acids / change in primary structure; if produces different amino acids) is in tertiary structure of protein;		3 max
			1
(ii)	phenylalanine needed to <u>form</u> proteins or named protein / impossible to get diet with none present / essential amino acid /		
	form other amino acids;	Total	6
tion 5			
			1
(i)	so that bacteria stick to it / transfer of bacteria;		1
(ii)	identifies those bacteria with <u>plasmid</u> ; as bacteria without plasmid / ampicillin gene killed;		2
(ii)	identifies which bacteria have recombinant DNA/ foreign DNA present / human gene present; these are killed by the antibiotic; as the gene for tetracycline resistance has been destroyed /		
	bacteria not resistant to tetracycline;		2 max
colony	present on ampicillin plate but not on tetracycline plate;		1
		Total	7
	change differed with description of the change change (i) (ii) (iii) (iii) (iii)	 (ii) phenylalanine needed to form proteins or named protein / impossible to get diet with none present / essential amino acid / form other amino acids; iion 5 gene no longer functional / bacteria not resistant to tetracycline; (reject gene/plasmid not resistant to tetracycline) (i) so that bacteria stick to it / transfer of bacteria; (ii) identifies those bacteria with plasmid; as bacteria without plasmid / ampicillin gene killed; (ii) identifies which bacteria have recombinant DNA/ foreign DNA present / human gene present; these are killed by the antibiotic; 	change in base sequence in mRNA / different mRNA codons; different tRNA molecules pair with mRNA; with different amino acids / change in primary structure; (reject produces different amino acids) change in tertiary structure of protein; change in shape of active site; (i) no accumulation of phenylalanine; (ii) phenylalanine needed to form proteins or named protein / impossible to get diet with none present / essential amino acid / form other amino acids; Total iton 5 gene no longer functional / bacteria not resistant to tetracycline; (reject gene/plasmid not resistant to tetracycline) (i) so that bacteria stick to it / transfer of bacteria; (ii) identifies those bacteria with plasmid; as bacteria without plasmid / ampicillin gene killed; (ii) identifies which bacteria have recombinant DNA/ foreign DNA present / human gene present; these are killed by the antibiotic; as the gene for tetracycline resistance has been destroyed / bacteria not resistant to tetracycline;

(a) allele;

(b) (i) cells/embryos/DNA damaged by process;

embryo rejected;

1

1

(ii) gene not incorporated into plasmid/vector;

gene/plasmid not incorporated into sheep cells/DNA

/chromosomes;

gene not switched on/expressed;

1 max

(c) (i) meiosis/gamete formation / present in germline cells;

fertilisation/fusion of gametes/zygote formation;

2

(ii) gene in plasmid which is not passed on in the cytoplasm;

only one chromosome of pair passed on / gene or allele only on one chromosome; half the gametes contain the gene;

1 max

Total 6

Question 7

(a) change in shape of carrier/ channel/membrane protein;

(channel) protein no longer transports chloride;

lower water potential in cells;

water retained by cells;

3 max

(b) mucus not removed;

mucus traps bacteria allows bacteria to breed;

2

(c) use of liposomes/small lipid droplets / harmless virus;

use of aerosol/sprays/inhalers;

virus/liposomes fuse with membrane of cells or virus infects cells;

genes move across membrane into cells;

also accept

CFTR genes inserted into plasmids;

appropriate use of restriction/ligase enzymes;

4 max

Total 9

(a) heat DNA to 95°C / 90°C; strands separate; cool so that primers bind to DNA; add DNA polymerase/nucleotides; use of restriction enzymes; use of electric current and agar/gel; shorter fragments move further;

6 max

(b) probes bind to complementary base sequences; (bands refer to) different base sequences along DNA / same base sequences not repeated along DNA;

2

Total 8

QWC (See guidance)

1