

GCE

Biology B

Unit BYB4

Copyright ${ }^{\ominus} 2003$ AQA and its licensors. All rights reserved.

SECTION A

Question 1

(a)

	Process	
	Respiration	Photosynthesis
Name of coenzyme	NAD	NADP
Stage in the process where coenzyme is reduced	Glycolysis and	link reaction/Krebs cycle

$1^{\text {st }}$ column,
glycolysis and Krebs cycle/link reaction;
oxidative phosphorylation/ETC;
$2^{\text {nd }}$ column,
light dependent, then light independent;
(b) used to reduce G3P;
to sugar/triose phosphate/fructose/glucose;

Question 2

(a) (i) antibody cannot get through pores (and attack cells); glucose small enough to (diffuse) enter / hormones can leave; protects from lymphocytes / no antigen on silicon box;
(ii) killing animals to use for human (transplant);
religious objections;
other valid suggestion;
1 max
(b) rise/fall in rat blood sugar means more/less glucose enters (diffuses) into box; detected by animal pancreas cells that release insulin/glucagon; insulin (diffuses) into rat's blood; insulin/glucagon makes rat's cells take up/release more glucose;

Total 6

Question 3

(a) (i) pyruvate;

1
(ii) reacts (with coenzyme A) to give acetylcoenzyme A ;
decarboxylation / CO_{2} given off;
NAD reduced / oxidation;
(b) only glycolysis in anaerobic conditions / CO_{2} only produced in Krebs cycle; with oxygen get aerobic respiration involving Krebs cycle / link reaction; with release of (radioactively labelled) carbon dioxide;
CO_{2} given off in link reaction; $\quad 3$ max
Total 6

Question 4

(a) $\mathbf{X}-\mathrm{ADP}$,
\mathbf{Y} - phosphate $/ \mathrm{P}_{\mathrm{i}} / \mathrm{P}$;
(b) (candidates may start at any point but must refer to stages)

Stage A, binding cause(d) myosin head to move and pull actin past:
Stage B, binding of ATP releases myosin head from actin;
leading to movement of myosin head in Stage C;
B/C/D linked to breakdown of ATP to ADP and phosphate;
Stage D, myosin head binds to actin;
binds to actin to left of first one;
also causes ADP and phosphate release; 4 max
(c) without ATP, myosin heads remain bound (to actin); 1

Total 6

Question 5

(a) cones sensitive to colour/different wavelengths of light;
three types of cones, red, green and blue absorbing; colours due to combinations of cones stimulated;
(b) (i) (with reference to peak absorption) both have three different types of cells/three peaks of absorption;
two types very similar, about 450 nm and $525-550 \mathrm{~nm}$; (accept blue and green)
human type at 600 nm and moth type at 350 nm ;
(accept red and $U V$) 2 max
(ii) flower (has a pigment that) reflects light in 350 nm range; moth has cells to detect this (humans do not);

2
(iii) pattern points to food/nectar/pollen/identifies it from flowers with same shape;

1
Total 8

Question 6

(a) (i) FfGg; 1
(ii) DNA (in each chromosome) has replicated, (to give two chromatids); (so) two copies of the gene/allele, one on each chromatid; 2
(b) $\quad \mathbf{F}$ and \mathbf{G} bearing chromosomes on same side of equator; 1
(c) crossing over shown between non-sister chromatids; in correct place; diagram showing chromatids and alleles after cross over; 3

Question 7

(a) allele, one form of a (specific) gene; 1 sex-linked, on sex chromosomes/X/Y;1
(b) (i) 3 and 4 do not show the condition but 9/one male does;

4 must be carrier;
OR
1 affected but not daughter/4;
who gets \underline{X} from father;
(ii) grandfather/1 passed on his (affected) X chromosome to his daughter/4;
who was unaffected, because of the 'normal' X
inherited from her mother/2;
9 inherited his X chromosome from his mother/4; 2 max
Total 6

Question 8

(a) (greatly) reduces growth of field grass seedlings compared to mine waste seedlings;
wider range of effects seen with mine waste seedlings;
(b) copper harms/reduces growth in field grass/group \mathbf{M}
(more) resistant to/better able to grow on soil with lots of copper; group \mathbf{M} have selective advantage/product of natural selection; group \mathbf{M} have genes/alleles for copper resistance; (reject environmental arguments) 2 max
(c) suggestion; and explanation;
for example:
mutation;
producing allele for copper resistance/new protein for resistance;
OR
cross-breeding/pollination with group \mathbf{M} plant; introducing resistance allele;

SECTION B

Question 9

(a) heterotrophic;
no cell walls;
blastula formation;
(chemical and) nervous control;
growth not confined to meristems;
starch in plants;
(accept have muscles) 3 max
(a) Phylum, Class, Order, Family;

Ensatina eschscholtzi;
2
(c) (i) (populations) isolated/in different areas;
no interbreeding (between populations)/gene exchange/flow; variation in each (population); (accept example of variation) due to mutation/meiosis; (accept reference to types of mutation) each population adapting to its own/different environment; through natural selection; producing differential survival; producing changes in allele/phenotype frequencies; producing reproductive isolation;

4 max
(ii) breed together salamanders from different areas; if fertile offspring, then still same species;

2
(iii) phenotype depends on genotype and environment; different local environments can produce variation;
different selection pressures;
mutations producing new alleles;
meiosis produces new combinations of
alleles/example;
random fusion of gametes / sexual reproduction
4 max

Question 10

(a) (epithelial cell) of tubule cells carry out active transport; transport chloride/sodium ions out (of filtrate);
against concentration gradient;
into surrounding tissue/tissue fluid; creates/maintains water potential gradient for water reabsorption; countercurrent multiplier;
(b) if water potential of blood falls, detected by receptors in hypothalamus; leads to ADH released from pituitary gland;
ADH makes cells of collecting duct/distal convoluted tubule permeable to water; (accept DCT)
water leaves filtrate by osmosis;
smaller volume of urine produced;
(accept converse if water potential of blood rises) 4 max
(c) (i) (autonomic reflex), autonomic ganglion involved;
extra synapse outside the spinal cord; inhibitory rather than excitatory neurone; more neurones involved;
(ii) (full bladder) stimulation of stretch receptor; sends nerve impulses to spinal cord; synapse with neurone connecting to brain/nerve impulses go to brain; impulses from brain to inhibitory motor neurone; via synapse in spinal cord; external sphincter relaxes; internal sphincter already relaxed so bladder empties; (1 mark for statement that both sphincters are relaxed for urination)

Total 15
QWC (See guidance)

