

Mark scheme January 2002

GCE

Biology B

Unit BYB4

SECTION A

Question .	1
------------	---

(a) A = rods AND B = cones; 1

(b) Fovea centralis / fovea / yellow spot;

(c) more receptor cells at 8 / fewer receptor cells at 12 **OR** cones present in 8 / cones not present in 12; cones capable of greater acuity (than rods);

because each cone has / is more likely (than rods) to have its own

ganglion / bipolar cell / nervous supply;

Total 4

2 max

Question 2

(a) (i) Centromere; 1

(ii) Attaches (chromatids / chromosomes) to spindle (in cell division) **OR** divides to separate chromatids;

(b) Chromatids; 1

(c) <u>Haploid</u>, because no homologous / paired chromosomes present / *allow* "because all the chromosomes are different";

Total 4

Question 3

(b)

(ii)

(a) (i) (Kidneys) *function*: removes urea from blood, *evidence from graph*: when kidneys not working the level of (blood) urea rises; 1

(Liver) *function*: makes urea / adds urea to blood, *evidence from graph*: no rise in urea (when liver not working) **OR** when working,

1

2

graph: no rise in urea (when liver not working) **OR** when working, urea not removed, so level rises;

Shown on graph. Firstly need to demonstrate change in gradient at 12 hours.

Time 0 to 12 hours – steady decline in urea level (below line Q); Curve horizontal from 12 hours;

Still award full credit if the line falls to x axis within first 12 hours and remains on the x axis thereafter.

Total 4

Questic	on 4		
(a)		Condominance; (Allow incomplete / inheritance without dominance)	1
(b)		$X^{B}Y$ OR B(-);	1
(c)		Parental genotypes are given: $X^R X^R = (X^B Y)$ - no mark	
		Offspring 1 genotypes: $X^R X^B = X^R Y$;	
		Offspring 2 genotypes: $X^R X^R = X^R X^B = X^R Y = X^B Y$;	
		Offspring 2 phenotypes: round eyed wide-bar round eye bar-eye female female male ;	3
		Ratio: 1 : 1 : 1	
		(Ignore ratio unless it contradicts: be alive to other possible ratios) (No marks as such for "gametes", though may inform markers where unclear.)	
		Total	5
Questic	on 5		
(a)		(Radioactive) carbon dioxide is used / incorporated; New compound(s) / intermediate(s) / names egs formed / become labelled;	2
(b)	(i)	Because stops reaction(s)/ process / pathway / enzyme action / kills algal cells;	1
	(ii)	Because reactions occur quickly OR need to remove samples after short / precise time;	1
(c)		$Q \rightarrow R \rightarrow S \rightarrow P ;$	1
(d)		Idea of cycle (or equivalent); Compound Q is used / reformed; If either above present allow identification of possible Q as: G3P / PGA / triose phosphate / GALP / RuBP Any two from three (noting special arrangement re. third point)	2
		Total	7

Question 6

(a) Phylum,

Order, Genus;

Any 2 score 1, all three gain 2 marks

(b) F. serratus and F. spiralis;

Highest % value (for non-self);

The more closely related they are, the more similar their DNA;

Explanation of value / complementarity in terms of joining strands;

(Special case: if spiralis / spiralis given, then max 1 possible if

complementarity explained)

Total 5

Question 7

(a) Reduced light intensity;

Receptors identified as in retina / rods / cones; Nerve impulses to CNS / along sensory nerve;

Nerve impulses from CNS / motor;

Sympathetic action;

To radial muscles which contract;

3 max

3 max

(b) (i) Prevents parasympathetic NS from working

OR allows sympathetic nervous system to work unopposed;

(ii) Eserine (no mark itself) involves acetylcholine;

Inhibits enzyme which normally breaks down Ach OR stops it

being broken down;

Effect of Ach / parasympathetic effect not stopped / enhanced e.g.

"AcH continues to bind to receptors" or similar;

2 max

Total 6

\sim		•
"	uestion	X
•	uchluni	•

(a)	Carbohydrate /	named exampl	<u>le</u> from foo	d / diet /	/ gut;	1
(4	,	Car o'O'II y arate /	numea exampl	<u>ie</u> 110111 100	a / alet /	540,	•

1 (b) (i) Pancreas:

(1 for each hormone correct / per column) (ii)

Effect of hormone	Insulin	Glucagon
Reduces carbohydrate in reservoir D		✓
Promotes A – fat breakdown	✓	
Promotes C – protein breakdown		✓
Increases rate of outflow at E	✓	

2

(c) (i) Glycogen; 1

Fats / lipid / triglyceride / adipose; 1 (ii)

(d) (Adrenaline) D; 2 (Thyroxine) E;

> 8 Total

Question 9

The higher the altitude, the lower the frequency (or converse); (a) Below 400m altitude, frequency levels off / pretty constant;

2

(b) (Higher frequencies found at certain (low) altitudes because)

Malaria found mainly among people at low altitudes;

Because warmer here **OR** more sources of still / slow-moving water;

t allele / heterozygous condition confers some resistance

against malaria;

Selection operates / heterozygotes favoured over

homozygous (dominant);

3 max

(c) Mainland Italians didn't bring / import the t allele with them

OR hadn't been exposed previously to malaria;

Malaria not / less of a factor in Sardinia since Carloforte established;

Insufficient time / generations for selection to operate / have an effect; 2 max

> Total 7

SECTION B

Inactio	14	,,,
Questio	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•

(a)		Needed to make ATP / for phosphorylation;		1
(b)		(Oxygen) needed for formation of ATP / phosphorylation; (Oxygen) used (so its level falls); (Oxygen) reacts (with 'H') to produce water; In the electron transport chain / at terminal acceptor; Allows recycling of reduced coenzymes / NAD / FAD;		3 max
(c)		Because equal amounts of ADP were added;		1
(d)		Less oxygen available in medium at Z than at Y OR because oxygen all used up / 'runs out';		1
(e)	(i)	Glucose cannot enter mitochondria BECAUSE too large to enter / no carrier system for it; OR glucose cannot be metabolised / equivalent BECAUSE necessal enzymes not present; (Note single marks here for a suitable suggestion, and for a connected, plausible reason / also that suggestion and reasons may 'cross over'. Allow, each for 2: "no cytoplasm, no glycosis, not to pyruvate")	ry	2
(f)	(ii)	Label glucose and determine its failure to enter mitochondria; 'Break' mitochondrial membrane (to allow entry of glucose); 'Release' appropriate enzymes from mitochondrion; Add glycolytic enzymes / 'cytoplasm' to medium in advance; (OR suitable suggestions re. possible reason previously given) Structure of sarcomere explained re. chains of sarcomeres in fibres; Actin – thin filaments, myosin – thick filaments; Relating sarcomere structure to thin / thick filaments OR acting / myosin; Idea of sliding filament hypothesis; Cross bridges formed between actin and myosin; ATP to ADP releasing energy; ATP / energy required for detachment / re-attachment; Explanation of ratchet mechanism; Need for Ca ⁺⁺ to move tropomyosin out of way / change its shape;		1
		Movement of tropomyosin allows attachment; Need for Ca ⁺⁺ in splitting of ATP; (Note that answers may use annotated diagrams)		6 max
		То	tal	15

Question 11

(a) (Gene 1) allele A makes <u>enzyme</u> converting J to K / colourless to red; Allele a produces no / non-functional enzyme; (Gene 2) allele B makes enzyme converting K to L / red to purple; Allele b produces no / non-functional enzyme; ("Recessive alleles produce no / non-functional enzyme" = 2) White flowers result from genotype aa; ... regardless if B or b / even if aaB ; Colourless (substance) / J produces white; Red flowers when A bb / enzyme 1 only; Purple flowers when A B / enzymes 1 and 2; 6 max (b) (1) (red parent) AAbb; (i) (2) (white parent) aaBB; 2 (ii) F₁ are AaBb; F_2 ratio of 9:3:4; Purple: red: white; Suitable working shown; 4 1 (c) (i) aabb, aaBb, and aaBB; (allow aabb & aaB) (Crush each type of white petal to make an extract, and) (ii) add some of the (red) pigment / K, to petal **OR** incubate with K; (extract becoming) purple is identified as aaBB **OR** that staying red, after K is added, is aabb; 2 15 Total

Quality of written communication

1