

Mark scheme January 2002

GCE

Biology B

Unit BYB1

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales 3644723 and a registered charity number 1073334 Registered address: Addleshaw Booth & Co., Sovereign House, PO Box 8, Sovereign Street, Leeds LS1 1HQ Kathleen Tattersall: Director General

www.theallpapers.com

(a)		Biuret reagent / Add NaOH and CuSO4; (ignore heated)		
		Positive result = violet/mauve/lilac/purple coloration; (<i>NOT blue</i>)	2	
(b)	(i)	Nitrogen / N; ($NOT N_{2}$)	1	
	(ii)	Condensation;	1	

(iii) Must have box correct (allow HN / NH, but must have C=O correct)

Total 5

Question 2

(a)	(i)	X 6.2;		1
	(ii)	Active transport / active uptake;		1
(b)		Ref. to carrier/intrinsic/pore/gate/transport/pump proteins; Ref. to different numbers of carrier proteins; Ref. to specificity / different types of carrier proteins; Ref. to charge / size of ion;		2 max
(c)		For respiration; Energy for active transport;	Total	1 max
			Total	5

Question 3

(a)		A = Epithelium (<i>ignore type of epithelium</i>) / Endothelium;		1
(b)		Muscle;		1
(c)	(i)	$\mathbf{X} = Mitochondria;$ $\mathbf{Y} = Microvilli / brush border;$		2
	(ii)	X = Provide energy/for active uptake; Y = Increase surface area;		2
			Total	6

www.theallpapers.com

(a)	82%	1
(b)	Concentration gradient maintained over whole lamella; Diffusion gradient maintained / oxygen taken up over whole lamella; Equilibrium never reached;	2 max
(c)		2
(d)	Remove one mark for each incorrect tick to minimum mark of zero Decreases surface area; (Thick wall) slows down diffusion rate / increases diffusion pathway; (NOT less diffusion)	2
	Mask increases concentration gradient / difference; Total	3 8

Question 5

(a)		Faster gas exchange / diffusion; Large / big / increased surface area / shorter pathway for gas exchange / Hb not too far from membrane; (NOT more / bigger / greater / easier / more efficient) <u>OR</u> Increases flexibility; To pass through capillaries;		2
(b)		Protein synthesis / Cell division / Mitosis; (NOT Meiosis)		1
(c)	(i)	Monolayer; Tails up / heads in water; (NOT completely submerged or floating in air)		2
	(ii)	0.5 / ¹ / ₂ ; Phospholipids are arranged in a bilayer;	Total	2 7

Question 6

(a)	Osmosis transports water; Proteins / carrier molecules not used / occurs through phospholipid bilayer;		2
(b)	Jam has a lower (more –ve) water potential than the bacterial cytoplasm; Water leaves the bacteria; Effect (of water loss) on bacteria e.g. killed / chemical reactions		
	cannot occur;		3
		Total	5

(a)	Active site;		1
(b)	Substrate enters active site; Complimentary shapes / Lock and Key; (<u>Binding</u>) to form <u>enzyme-substrate complex;</u> Lowering of activation energy; Conformational / shape change; Breaking <u>of bonds</u> in substrate; Products no longer fit active site and so are released;		4
(c)	Molecule A binds at site away from active site / allosteric site; Causes enzyme / active site to change shape; Molecule B can enter / competes for active site; Prevents substrate from entering / no enzyme-substrate		
	complex formed / active site blocked;		4
(d) (i)	<u>Secretes</u> enzymes (for extra-cellular digestion); Absorbs <u>products;</u>		2
(ii)	Optimum pH is 7 / neutral / between 6 and 8 / between 7 and 8;		1
(iii)	Max rate = $\frac{\text{Distance}}{\text{Time}}$ / $\frac{11}{4}$ / $\frac{11}{4 \times 60}$;		2
	[Correct answer = 2 marks <i>(IGNORE units)</i> e.g. 2.75 mm / hour, 0.046 mm/min, 4.6 x 10^{-3} mm/min 1 mm/ 21.8 mins, 23.76mm ² /hour]		
		Total	14

(a)		(H ₂ N)-Asn-Val-Tyr-Met-Ile-Tyr-Trp-Cys-Asn-Pro-His Lys-(COOH)]
(b)		$\frac{Both}{B} correct = 1 mark ; Correct = second mark; B; Correct = second mark; Correct $	2
		Fragment 3 is the second biggest molecule and so will travel second least distance;	2
(c)		Rf = <u>Distance travelled by spot</u> ; <u>79 mm</u> to <u>82 mm</u> = <u>0.61 - 0.64</u> Distance travelled by front 129 mm 129mm	2
		MUST be 2DP Correct answer = 2 marks	
(d)	(i)	A; As there are two molecules composed of 5 aa / the same size / contains fragments 2 and 5;	2
	(ii)	Use 2 way/2D chromatography / Rotate chromatogram 90°; Use a different solvent;	2
(e)		Long chains of aa; Folding of chain into a coil / folds / helix / pleated sheet; } 1	
		Association of several polypeptide chains together; Formation of fibres / sheets <u>explained;</u> 2	
		H bonds / Disulphide bonding (<i>In context</i>); <u>Fibres</u> provide strength (and flexibility); <u>Sheets</u> provide flexibility;	
		Example e.g. keratin in hair, collagen in bone; (<i>MUST be in context</i>) Insoluble because external R-groups are non-polar; Total	5 15

QWL 1