

GCE

Biology B

Unit BYB1

Question 1

(a) Biuret reagent / Add NaOH and CuSO_{4}; (ignore heated)

Positive result $=$ violet/mauve/lilac/purple coloration; (NOT blue) 2
(b) (i) Nitrogen / N; $\left(\operatorname{NOT~N}_{2}\right) \quad 1$
(ii) Condensation; 1
(iii) Must have box correct (allow $\mathrm{HN} / \mathrm{NH}$, but must have $\mathrm{C}=\mathrm{O}$ correct)

Total 5

Question 2

(a) (i) X 6.2 ;
(ii) Active transport / active uptake;

1
(b) Ref. to carrier/intrinsic/pore/gate/transport/pump proteins;

Ref. to different numbers of carrier proteins;
Ref. to specificity / different types of carrier proteins;
Ref. to charge / size of ion;
2 max
(c) For respiration;

Energy for active transport; 1 max
Total 5

Question 3

(a)
$\mathbf{A}=$ Epithelium (ignore type of epithelium) / Endothelium;
(b) Muscle;
(c) (i) $\mathbf{X}=$ Mitochondria;
$\mathbf{Y}=\underline{\text { Microvilli } / \text { brush border; }}$2
(ii) $\mathbf{X}=$ Provide energy/for active uptake;
$\mathbf{Y}=$ Increase surface area;2

Question 4

(a)
82%
1
(b) Concentration gradient maintained over whole lamella; Diffusion gradient maintained / oxygen taken up over whole lamella; Equilibrium never reached;
(c)

\checkmark		
		\checkmark
\checkmark		

Remove one mark for each incorrect tick to minimum mark of zero
(d)

Decreases surface area;
(Thick wall) slows down diffusion rate / increases diffusion
pathway; (NOT less diffusion)
Mask increases concentration gradient / difference;
3
Total 8

Question 5

(a) Faster gas exchange / diffusion;

Large / big / increased surface area / shorter pathway for gas exchange / Hb not too far from membrane;
(NOT more / bigger / greater / easier / more efficient)
OR
Increases flexibility;
To pass through capillaries; 2
(b) Protein synthesis / Cell division / Mitosis; (NOT Meiosis) 1
(c) (i) Monolayer;

Tails up / heads in water; 2
(NOT completely submerged or floating in air)
(ii) $0.5 / 1 / 2$;

Phospholipids are arranged in a bilayer;
2
Total 7

Question 6

(a) Osmosis transports water;

Proteins / carrier molecules not used / occurs through phospholipid bilayer;
(b) Jam has a lower (more -ve) water potential than the bacterial cytoplasm;
Water leaves the bacteria;
Effect (of water loss) on bacteria e.g. killed / chemical reactions cannot occur;

Question 7

(a) Active site; 1
(b) Substrate enters active site;
Complimentary shapes / Lock and Key;
(Binding) to form enzyme-substrate complex;
Lowering of activation energy;
Conformational / shape change;
Breaking of bonds in substrate;
Products no longer fit active site and so are released; 4
(c) Molecule A binds at site away from active site / allosteric site;
Causes enzyme / active site to change shape;
Molecule B can enter / competes for active site;
Prevents substrate from entering / no enzyme-substrate complex formed / active site blocked;
(d) (i) Secretes enzymes (for extra-cellular digestion);
Absorbs products;
2
(ii) \quad Optimum pH is $7 /$ neutral / between 6 and $8 /$ between 7 and 8 ; $\quad 1$
(iii) \quad Max rate $=\frac{\text { Distance }}{\text { Time }} \quad \frac{11}{4} / \frac{11}{4 \times 60}$;
[Correct answer $=2$ marks (IGNORE units)
e.g. $2.75 \mathrm{~mm} /$ hour, $0.046 \mathrm{~mm} / \mathrm{min}, 4.6 \times 10^{-3} \mathrm{~mm} / \mathrm{min}$
$1 \mathrm{~mm} / 21.8 \mathrm{mins}, 23.76 \mathrm{~mm}^{2} /$ hour]

Question 8

(a)

$\underline{\text { Both }}$ correct $=$ lmark $; \quad$ Correct $=$ second mark; 2
(b)

B;
Fragment 3 is the second biggest molecule and so will travel second least distance;
(c)
$\mathrm{Rf}=\frac{\text { Distance travelled by spot }}{\text { Distance travelled by front }} ; \frac{79 \mathrm{~mm}}{129 \mathrm{~mm}}$ to $\frac{82 \mathrm{~mm}}{129 \mathrm{~mm}}=\underline{\underline{0.61-0.64}}$
2

MUST be 2DP
Correct answer $=2$ marks
(d) (i) \mathbf{A};

As there are two molecules composed of 5 aa / the same size / contains fragments 2 and 5;2
(ii) Use 2 way/2D chromatography / Rotate chromatogram 90°;

Use a different solvent;2
(e)
$\left.\begin{array}{l}\text { Long chains of aa; } \\ \text { Folding of chain into a coil / folds / helix / pleated sheet; }\end{array}\right\}$
$\left.\begin{array}{l}\text { Association of several polypeptide chains together; } \\ \text { Formation of fibres / sheets explained; }\end{array}\right\} 2$
H bonds / Disulphide bonding (In context);
Fibres provide strength (and flexibility);
Sheets provide flexibility;
Example e.g. keratin in hair, collagen in bone; (MUST be in context)
Insoluble because external R-groups are non-polar;

QWL 1

