Version 1.0

General Certificate of Education (A-level) Applied January 2012

Applied Science

SC11

(Specification 8771/8773/8776/8777/8779)

Unit 11: Controlling Chemical Processes

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the school/college.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Question	Part	Sub- part	Marking guidance	AO	Mark	Comment
·		1			•	
			Products are removed at same time <u>as</u> reactants are			
1	(a)	(i)	added	1(AO1)	2	
			Process never stops	1(AO1)		
·			1	1	1	1
1	(a)	(ii)	Faster	1(AO1)	2	
1	(a)	(")	Purer product	1(AO1)	L	
. <u> </u>		r	1			
1	(b)	(i)	$TiO_2 + 2 CI_2 + 2 C$	1(AO2)	2	
1	(0)	(1)	\rightarrow TiCl ₄ + 2 CO	1(AO2)	L	
·					•	
1	(h)	(ii)	Reactants are added, reaction occurs	1(AO1)	2	
I	(0)	(11)	Then products are removed (and vessel is cleaned)	1(AO1)	2	
		-				
1	(h)	(iii)	(+)4	1(AO2)	2	
1	(0)	(11)	0	1(AO2)	L	
1	(b)	(iv)	Reduction/redox	1(AO2)	1	
1	(\mathbf{c})	(i)	The cost (per unit) of the product	1(AO1)	2	
I	(C)	(1)	is directly influenced by this cost. (OWTTE)	1(AO1)	2	
			Direct	1(AO2)		
1	(c)	(ii)	Indirect	1(AO2)	3	
			Capital	1(AO2)		

2	(a)	Enthalpy/heat energy change when <u>One mole</u> of a compound undergoes <u>complete</u> compustion	1(AO1)	2	
		66116651611	1(7.01)		

2	(b)	(i)	Any thre 1 - Ther 2 - Bure 3 - Calo	e from: mometer tte/pipette rimeter/co	e/measuring cylinder opper can 4 - Balance	1(AO3) 1(AO3) 1(AO3)	3	
2	(b)	(ii)	The main clude Comm for the will be an app Level	arking scl es an ass unication assessm one of th ropriate I Marks 4-5 2-3	heme for this part of the question essment of the Quality of Written (QWC). There are no discrete marks ent of written communication but QWC e criteria used to assign the answer to evel below. Descriptor An answer will be expected to meet most of the criteria. Answer is full and detailed and is supported by an appropriate range of relevant points such as those given below: - argument is well structured with minimal repetition or irrelevant points - accurate and clear expression of ideas with only minor errors in the use of technical terms, spelling, punctuation and grammar. Answer has some omissions but is generally supported by some of the relevant points below: - the argument shows some attempt at structure - the ideas are expressed with reasonable clarity but with a few errors in the use of technical terms, spelling, punctuation and grammar.	5(AO3)	5	

		1 0-1 Answer is largely incomplete. It may contain some valid points which are not clearly linked to an argument structure: - unstructured answer - errors in the use of technical terms, spelling, punctuation and grammar or lack of fluency.	
2 (b)	(ii)	QWC A good answer might include: A small camping stove could be used. The mass of the stove with butane would be measured and recorded before the experiment. A known volume of water (100cm ³) would be accurately measured using a burette and placed in a copper calorimeter. The temperature of the water would be measured for a few minutes to allow the thermometer to equilibrate. The stove would then be lit and used to heat the water in the calorimeter until the temperature had risen by 10°C. The flame would then be extinguished and the mass of the burner, once cool, measured again. $Q=mc\Delta T$ would then be used to calculate the enthalpy change for the experiment. The molar enthalpy change for butane would then be calculated using Q/no of moles.	

2 (b) (iii) Reduce draughts (i.e. use heat shield) 1(AO3) 2 Stir consistently Beneat	2	(b) (iii) Any two of: Insulate container/lid Reduce draughts (i.e. use heat sh Stir consistently Repeat	eld) 1(AO3) 1(AO3)	2	
--	---	---	-----------------------	---	--

2	(c)		Use Q = mc Δ T Q = 3000 x 4.2 x 95 = 1197 kJ Number of moles = 1197/2876.5 = 0.416(1) Assumption is that the water will boil at 100 °C Density of water = 1g/cm ³ All heat is transferred to container (OWTTE) 100% efficiency	1(AO1) 1(AO2) 1(AO2) 1(AO1)	4	
2	(d)	(i)	0.732 x 100/80 = 0.915 If used alternative answer will be 0.915	1(AO2)	1	
2	(d)	(ii)	0.915 x 22.4 = 20.5 If used alternative answer will be 20.5 dm^3	1(AO2)	1	

3	(2)	(i)	Reactants and products	1(AO1)	2	
5	(a)	(1)	are in the same state	1(AO1)	-	
		-				
			Both forward and reverse reactions occur OR	1(AO1)		
3	(a)	(ii)	When products can be turned back into reactants		1	
			OWTTE			
2	(h)	(i)	A system in equilibrium	1(AO1)	n	
3	3 (D)	(1)	Will oppose any change imposed upon it	1(AO1)	2	
			Number of moles of NO present will increase	1(AO2)	2	
2	(h)	(ii)	The forward reaction is endothermic	1(AO2)		
3	(0)		The equilibrium will therefore shift to the right to oppose		3	
			the increase in temperature/reduce the temperature	1(AO2)		
			None	1(AO2)		
			LCP states that increase in pressure will shift the			
3	(b)	(iii)	equilibrium to side with the least gas molecules	1(AO2)	3	
			the number of gaseous reactant molecules is the same			
			as the number of gaseous product molecules.	1(AO2)		

3	(c)	(i)	$0.12 \times 0.12 / 0.8 \times 0.05 \text{ mark is for substituting numbers}$ correctly = 0.0144 / 0.04 = 0.36	1(AO2) 1(AO2) 1(AO2)	3	
			- 0.00	1(/(02)	l	
3	(C)	(ii)	Top and bottom cancel each other out	1(AO2)	1	
						Total Marks: 15
4	(a)	(i)	$\Sigma\Delta H_f(\text{products}) - \Sigma\Delta H_f(\text{reactants}) / \text{appropriate Hess's}$ cycle -77.6 - 52.3 = -129.9 (ignore units)	1(AO2) 1(AO2)	2	
4	(a)	(ii)	Enthalpy of formation for oxygen is zero because it is an element	1(AO1)	1	
4	(a)	(iii)	Σ Bonds broken = $612 + 496/2 = 860$ Σ Bonds formed = $348 + 2 \times 360 = 1068$ Bonds broken – bonds formed = -208	1(AO2) 1(AO2) 1(AO2)	3	
4	(a)	(iv)	Mean bond enthalpies are an average for that bond in several different environments whereas Enthalpy of formation data are for those specific compounds	1(AO1) 1(AO1)	2	
4	(b)		No naked flames Breathing apparatus / contain fumes	1(AO2)	1	
4	(c)	(i)	Horizontal axis = Energy Vertical axis = number of molecules	1(AO1) 1(AO1)	2	
4	(c)	(ii)	Curve skewed to left of original Peak higher than original	1(AO2) 1(AO2)	2	

						2(AO1)		
			The ma	rking sch	eme for this part of the guestion	3(AO2)		
			include	s an asse	ssment of the Quality of Written	× ,		
			Commu	unication (QWC). There are no discrete marks			
			for the	assessme	nt of written communication but QWC			
			will be o	one of the	criteria used to assign the answer to			
			an appi	opriate le	vel below.			
			Level	Marks	Descriptor			
					An answer will be expected to meet			
					most of the criteria in the level			
					descriptor.			
			3	4-5	Answer is full and detailed and is			
					supported by an appropriate			
					range of relevant points such as			
					those given below:			
					 argument is well structured 			
4	(c)	(iiii)			with minimal repetition or		5	
	(0)	(11)			irrelevant points		Ũ	
					 accurate and clear expression 			
					of ideas with only minor errors			
					in the use of technical terms,			
					spelling, punctuation and			
					grammar.			
			2	2-3	Answer has some omissions but			
					is generally supported by some of			
					the relevant points below:			
					 the argument shows some 			
					attempt at structure			
					- the ideas are expressed with			
					reasonable clarity but with a			
					tew errors in the use of			
					tecnnical terms, spelling,			
					punctuation and grammar.			

4	(c)	(iii)	1 0-1 Answer is largely incomplete. It may contain some valid points which are not clearly linked to an argument structure: - unstructured answer - errors in the use of technical terms, spelling, punctuation and grammar or lack of fluency.	
			QWC: A good answer might include: The activation energy is the minimum amount of energy particles require to react when they collide. At a lower temperature the particles will move slower and so collide less frequently. The proportion of particles that possess an energy greater than or equal to the Ea will decrease. There will therefore be fewer successful collisions per second and so the rate of reaction will decrease.	

5	(a)		4	1(AO1)	1	
5	(h)	(i)	4.4 x 10 ⁻³	1(AO2)	2	
5	(0)	(1)	0.3	1(AO2)	L	
5	(b)	(ii)	Rate constant	1(AO2)	1	
5	(b)	(iii)	11	1(AO2)	1	
5	(b)	(iv)	$mol^{-3} dm^{+9} s^{-1}$	1(AO2)	1	
F		-) (i)	A substance which alters the rate of a reaction	1(AO1)	2	
5	(C)	(1)	But is itself not used up	1(AO1)	Z	

5	(c)	(ii)	Reactants and products labelled General shape Products lower than reactants	1(AO1) 1(AO1) 1(AO2)	3	
5	(c)	(iii)	Peak lower Joins original at reactants and products	1(AO2) 1(AO1)	2	