Surname			Other	Names			
Centre Number				Cand	lidate Number		
Candidate Signatur	е						

For Examiner's Use

General Certificate of Education January 2010 Advanced Subsidiary Examination

AQA

APPLIED SCIENCE Unit 2 Energy Transfer Systems

Tuesday 12 January 2010 9.00 am to 10.30 am

For this paper you must have:

- a pencil and a ruler
- a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Use pencil only for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Answers written in margins or on blank pages will not be marked.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- Show the working of your calculations.

Information

- The maximum mark for this paper is 80.
- The marks for questions are shown in brackets.
- You are expected to use a calculator where appropriate.

For Examiner's Use				
Question	Mark	Question	Mark	
1	1 5			
2 6				
3				
4				
Total (Co	olumn 1) -			
Total (Column 2)				
TOTAL				
Examiner's Initials				

SC02

SC02

Answer all questions in the spaces provided.

		Thiswel an questions in the spaces provided.
1	The	diagram shows a cross-section through a human heart.
A		B
1	(a)	Label the structures A and B on the diagram. (2 marks)
1	(b)	Explain why the wall of the left ventricle is thicker than the wall of the right ventricle.
		(2 marks)
1	(c)	A 12-year-old girl found that she became tired quickly during sports activities. A health practitioner decided to carry out a health assessment to discover the cause.
1	(c)	(i) The girl's electrocardiogram (ECG) was recorded and compared with a normal ECG trace. What does an ECG trace show about the working of the heart?

(2 marks)

1 (c) (ii) The girl was found to have tachycardia.

Which ECG trace, A, B, C or D, shows tachycardia?

Time (seconds)

Time (seconds)

Time (seconds)

Time (seconds)

(1 mark)

1	(d)	The health practitioner listened to the girl's heart using a stethoscope and was able to hear her heart beating.
		Describe what the health practitioner heard and explain what causes these sounds.
		(4 marks)
1	(e)	The girl's breathing was also monitored and her peak expiratory flow rate was found to be 280 dm ³ min ⁻¹ . How does this value compare with a normal value for peak expiratory flow rate?
		(1 mark)

1 (f) The girl's lung function could have been measured using a spirometer. A spirometer trace is used to identify different lung volumes. The following spirometer trace was produced when a person with normal lung function was tested.

With reference to the spirometer trace, complete the table by inserting the correct letters, A - D, to show which lung volumes are represented.

Lung volume	Letter
Vital capacity	
Tidal volume	

(2 marks)

14

Turn over ▶

2	(a)	suffe The	ng the heat wave in Britain in 1976 many people were admitted to hospital bring from heat stroke. heat-regulating mechanisms of their bodies became overwhelmed resulting in a scal emergency.
2	(a)	(i)	If body temperature is measured in the mouth, at what temperature is heat stroke indicated?
			°C (1 mark)
2	(a)	(ii)	Describe the mechanisms that the body uses to lower the core body temperature when the external temperature rises above normal levels.
			(4 marks)
2	(a)	(iii)	The body also generates its own heat. How does it do this?
			(2 marks)

2	(b)	Give three routes, other than through the skin, by which the body loses hear	t.
		1	
		2	
		3	
			(3 marks)
2	(c)	Give three factors that affect the rate at which heat is lost from the body.	
		1	
		2	
		3	(3 marks)

Turn over for the next question

Turn over >

3	(a)	_	oup of studen solution.	ts carried ou	t an experim	ent to monite	or the rate o	f respiration of	of a
3	(a)	(i)	Yeast can re Write a bala		erobic respiral equation f		espiration.		
								(3	marks)
3	(a)	(ii)	yeast respired The carbon of was repeated concentration The results a is produced water.	Ided to the sold. dioxide was all with three on and also ware shown in by the yeast	collected and other sugars, ith deionised the table. T during respin	arbon dioxidal measured a fructose, mader. I water. They show the cation with e	te was product 20 minute altose and la e volume of ach sugar, a	ne gram of acced slowly as intervals. The actose, of equal according to the condition of th	nis al de that nised
				Vol	ume of carb	on dioxide p	oroduced (c	em³)	
			Time min	With glucose	With fructose	With maltose	With lactose	With deionised water	
			0	0.0	0.0	0.0	0.0	0.0	
			20	0.5	0.0	2.0	0.0	0.0	
			40	4.6	0.0	7.4	0.5	0.0	
			60	16.1	0.0	19.2	1.3	0.0	
			80	32.5	5.6	37.3	2.0	0.0	
			100	47.4	11.9	57.2	2.6	0.0	
			Suggest what sugars.	it the data sh	ow about the	respiration	of yeast usi	ng the differen	nt
								(4	marks)

3	(a)	(iii)	Why was the experiment repeated using deionised water?
3	(b)	(i)	Some people are intolerant of lactose, a sugar found in milk. This is because their body does not have an enzyme called lactase which is necessary to break down lactose to glucose. Some students were asked to design and perform an experiment to show the effect of adding lactase to a lactose solution before adding the yeast and monitoring the rate of respiration.
			Use this information and the data in the table on page 8 to explain what you would expect the results to show.
			(3 marks)
3	(b)	(ii)	Suggest two other factors that the students could alter that would affect the rate of respiration of the yeast.
			(2 marks)

Turn over ▶

4	users Each with Befo	to get time the pare	es have a feature that allows the front of the bus to be lowered to allow wheelchair et on without having to be lifted up. the bus stops, the front is lowered by 12 cm, bringing the floor of the bus level avement. bus moves off, the front is raised to its normal height. The force needed to raise f the bus is 40 000 N.
4	(a)	How	much energy is needed to raise the front of the bus to its normal height?
			Energy(2 marks)
4	(b)	(i)	An electric motor takes 4 seconds to raise the front of the bus to its normal height. What is the minimum output power of this motor?
			Power
4	(b)	(ii)	A different bus has a similar motor with an output power of 1.5 kW and an input power of 2.0 kW. What is the efficiency of this motor?
			(2 marks)

4	(b)	(iii)	State two useful forms of energy that are produced by this motor.
			1
			2
			(2 marks)
4	(c)	elect	s been suggested that the diesel-powered buses should be replaced by rically powered trams. The trams take electricity from overhead power lines and on rails.
4	(c)	(i)	Suggest two advantages of this change.
			1
			2
			(2 marks)
4	(c)	(ii)	Suggest two disadvantages of this change.
			1
			2
			(2 marks)

Turn over for the next question

Turn over >

5 An architect is converting two identical barns into houses. The original barns have hollow walls as shown in the diagram.

Outline view of barn

Side view of original walls

The U-value of the original barn is considered to be too high.

5	(a)	Explain what is meant by the U -value of the building.
		(3 marks)
5	(b)	The architect suggests filling the gap between the inside and outside walls with foam.
		Explain how this change would reduce convection in the walls.
		(2 marks)
5	(c)	The water in each converted barn will be heated using solar panels on the roof.
5	(c)	(i) What form of energy transfer moves heat from the Sun to the Earth?
		(1 mark)

5	(c)	(ii)	What colour should the surface of the solar panels be to be most efficient in collecting heat energy from the Sun?	
			(1 mark)	
5	(c)	(iii)	State two reasons for having a second way of heating the water in the converted barns, as well as the solar panels.	
			(2 marks)	
5	(d)	The two new families living in the converted barns are considering if it is worth fitting extra loft insulation. They decide to run an experiment for one month. One family fits extra insulation, and the other one does not. Both families measure the energy used for heating their converted barn for one month.		
5	(d)	(i)	State two precautions to help the families make this a fair test.	
			1	
			(2 marks)	
5	(d)	(ii)	How could they change the experiment to get more valid results?	
			(1 mark)	
5	(e)	-	is a thick layer of insulation in the loft more effective at reducing the converted 's heating bills than a thick carpet laid on the floor?	
			(2 marks)	

Turn over >

6 A man uses an electrically powered bicycle to go to work every day. A battery powers the motor, which propels the bicycle at a steady speed.

6	(a)	(i)	State the useful energy changes that occur in
			the battery
			the motor
			(2 marks)
6	(a)	(ii)	Describe one energy change in the bicycle that is not useful.
			(1 mark)
6	(b)	(b) Electrical bicycles sometimes use regenerative braking. During regenerative braking, the bicycle's motor is used as a generator to recharge the battery.	
			is this more energy efficient than the normal method of slowing a bicycle by on brakes?
			(2 marks)

6	(c)	However, he finds that it is pressure is reduced. Reduced.		ver rough surfaces if the tyre s allows them to change shape		
		Explain why it is more cor (reduced pressure) tyres.	mfortable to ride over rough	surfaces with under inflated		
				(2 marks)		
6	(d)	<u> •</u>	•	s efficiency. The diagram shows ad at different tyre pressures.		
		Ту	re surface in contact with	the road		
		A S S S S S S S S S S S S S S S S S S S				
		Under inflated (reduced pressure)	Correct inflation (correct pressure)	Over inflated (high pressure)		
		Explain how high pressure in the tyres makes the bicycle more efficient.				
		Quartic	on 6 continues on the next	(3 marks)		

6	(e)	For legal reasons, the bicycle has a maximum speed of 6.6 m s ⁻¹ (15 m p h). The total mass of the man and the bicycle is 90 kg. Calculate the kinetic energy of the man and the bicycle when travelling at the maximum legal speed. State the correct unit in your answer.
		(4 marks)

END OF QUESTIONS

Copyright $\ensuremath{\mathbb{C}}$ 2010 AQA and its licensors. All rights reserved.

